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OPERADIC STRUCTURE ON THE GERSTENHABER-SCHACK COMPLEX FOR

PRESTACKS

HOANG DINH VAN, LANDER HERMANS, AND WENDY LOWEN

Abstract. We introduce an operad Patch which acts on the Gerstenhaber-Schack complex of a prestack
as defined by Dinh Van and Lowen, and which in particular allows us to endow this complex with an
underlying L∞-structure. We make use of the operad Quilt which was used by Hawkins in order to
solve the presheaf case. Due to the additional difficulty posed by the presence of twists, we have to
use Quilt in a fundamentally different way (even for presheaves) in order to allow for an extension to
prestacks.

1. Introduction

The deformation theory of algebras due to Gerstenhaber furnishes the guiding example for algebraic
deformation theory. For an algebra A, the Hochschild complex C(A) is a dg Lie algebra governing the
deformation theory of A through the Maurer-Cartan formalism. This dg Lie structure is the shadow of
a richer operadic structure, which can be expressed by saying that C(A) is a homotopy G-algebra [6].
This structure, which captures both the brace operations and the cup product, is a special case of a
B∞-structure [7]. Importantly, this purely algebraic structure constitutes a stepping stone in the proof
of the Deligne conjecture, proving C(A) to be an algebra over the chain little disk operad [13] [10].

The deformation theory of algebras was later extended to presheaves of algebras by Gerstenhaber
and Schack, who in particular introduced a bicomplex computing the natural bimodule Ext groups [4],
[5]. However, this GS-complex C(A) of a presheaf A does not control deformations of A as a presheaf,
but rather as a twisted presheaf, see for instance [11], [2]. From this point of view, it is more natural
to develop deformation theory at once on the level of twisted presheaves or, more generally prestacks,
that is, pseudofunctors taking values in the 2-category of linear categories (over some fixed commutative
ground ring). In [2], Dinh Van and Lowen established a Gerstenhaber-Schack complex for prestacks,
involving a differential which features an infinite sequence of higher components in addition to the
classical simplicial and Hochshild differentials. Further, for a prestack A, they construct a homotopy
equivalence CGS(A) ∼= CC(A!) between the Gerstenhaber-Schack complex CGS(A) and the Hochschild
complex CC(A!) of the Grothendieck construction A! of A. Through homotopy transfer, this endows
the GS-complex with an L∞-structure. This result improves upon the existence of a quasi-isomorphism,
which is a consequence of the Cohomology Comparison Theorem due to Gerstenhaber and Schack for
presheaves [5] and to Lowen and Van den Bergh for prestacks [12].

Although the GS-complex does not possess a B∞-structure, its elements - linear maps involving
different levels of the prestack - can be composed in an operadic fashion. As such, it makes sense to
investigate this higher structure in its own right, and use it directly in order to establish an underlying
L∞-structure. For particular types of presheaves, explicit L∞-structures on the GS-complex have been
established by Frégier, Markl and Yau in [3] and by Barmeier and Frégier in [1].

Let Brace be the brace operad and F2S the homotopy G-operad. In the case of a presheaf (A,m, f),
in [8], Hawkins introduces an operad Quilt ⊆ F2S⊗H Brace which he later extends to an operad mQuilt
acting on the GS-complex. These operads are naturally endowed with L∞-operations as desired. The
action of Quilt on the GS-complex considered by Hawkins only involves the restriction functors f of the
presheaf, the multiplication m being incorporated later on in mQuilt. Unfortunately, the way in which
functoriality of f is built into these actions, does not allow for an extension to twisted presheaves or
prestacks.
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The goal of this paper is to solve the problem of establishing a natural operadic structure with
underlying L∞-structure on CGS(A) in the case of a general prestack (A,m, f, c) with twists c. As part
of our solution, we use Quilt in a fundamentally different way in relation to the GS-complex, but still
allowing us to make use of the naturally associated L∞-structure from [8]. In section §3, we capture
the higher structure of CGS(A) by introducing the new operad Patch ⊆ mNSOp⊗H NSOp over which
CGS(A) is shown to be an algebra (see Theorem 3.24). Here, (m)NSOp is the operad of nonsymmetric
operads (with multiplication).

In [6], Gerstenhaber and Voronov obtain a brace algebra structure on an operad and a homotopy
G-algebra structure on an operad with multiplication. Based upon the expression of these results in
terms of the underlying operads NSOp and mNSOp in §2, we construct a morphism Quilt −→ Patchs
(see Proposition 3.27) as a restriction of

F2S⊗H Brace −→ mNSOpst⊗H NSOps,

where the operads with subscript denote the (uncolored) graded operads associated to the unsubscripted
colored operads. This gives rise to the composition

R : Quilt −→ Patchs −→ End(sCGS(A))

which incorporates the multiplication m and the restrictions f of A.
In §4, we extend the action R to

Rc : Quiltb[[c]] −→ End(sCGS(A))

in order to incorporate the twists (see Theorem 4.17). Here, Quiltb[[c]] is obtained from an operad of
formal power series. Further, we establish L∞-operations on Quiltb[[c]] extending those on Quilt from
[8] (see Theorem 4.10) by adding an infinite series of higher components containing twists. Under the
action of Quilt this neatly corresponds to and extends the differential on CGS(A) obtained in [2]. In the
final section 4.5 we briefly discuss the relation of this L∞-structure with the deformation theory of the
prestack A.

The present work naturally grew out of [2], and at the time when [8] appeared large parts of an
operadic approach to the GS complex of a prestack had already been developed independently by us.
Given the efficient way in which Hawkins’ description of Quilt gives rise to an L∞-structure, we decided
it was worthwhile to build on this approach to the presheaf case, albeit in a way which “flips and refines”
the action of Quilt in order to make it useful for general prestacks. As a consequence, when we follow
through Hawkins’ approach, in comparison we manage to incorporate not only the restrictions f , but
also the multiplications m in an initial action of Quilt on the GS complex. In analogy with the way in
which Hawkins extends his action from Quilt to mQuilt in order to incorporate the multiplications m,
we establish an extension from Quilt to Quiltb[[c]] in order to incorporate the twists c.

The current paper is part of a larger project in which it is our goal to understand the homotopy
equivalence CGS(A) ∼= CC(A!) from [2] operadically, showing in particular that the L∞-structure from
[2] and the one established in the present paper actually coincide.

Acknowledgement. The authors are grateful to an anonymous referee for their meticulous reading of an
earlier version of the manuscript, and in particular for several corrections and valuable suggestions which
greatly helped improve the paper. The third named author thanks Severin Barmeier and Eli Hawkins
for bringing the preprints [1], respectively [8] to her attention.

2. Gerstenhaber-Voronov operadically

In the seminal paper [6], Gerstenhaber and Voronov define a brace-algebra structure on the totalisation
of a non-symmetric operad O. Moreover, in presence of a multiplication, they define a homotopy G-
algebra structure on O incorporating both the cup product and the Gerstenhaber-bracket.

In this section we describe the morphisms of operads underlying these results. To this end, in §2.3, we
recall the colored operad NSOp encoding non-symmetric operads, and we describe the natural extension
mNSOp which adds a multiplication. Let NSOps and mNSOpst be their totalised graded (uncolored)
operads with suspended, respectively standard degree ( see §2.5 and §2.6). Let Brace be the brace
operad (see §2.1) and F2S the Gerstenhaber-Voronov operad encoding homotopy G-algebras (see §2.2).
The main goal of this section is the definition of morphisms of dg-operads

φ : Brace −→ NSOps

and

φ̄ : F2S −→ mNSOpst
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(see Theorems 2.16 and 2.34 respectively). In these definitions, we have to pay particular attention to
the choice of signs. For this, we will make use of morphisms of operads (m)NSOp −→ Multi∆ landing
in the multicategory associated to the simplex category ∆ (see Proposition 2.11).

For both uncolored as colored operads, we use the term morphism of operads. In case confusion may
arise, we add a subscript to differentiate the uncolored operads from their colored counterparts.

2.1. The operad Brace. Throughout, we work over a fixed commutative ground ring k.
The operad Brace encoding brace algebras is defined using trees, that is, planar rooted trees. Following

the presentation from [8, §2.2], for a tree T we denote the set of vertices by VT , the set of edges by ET ,
the “vertical” partial order on VT generated by ET by ≤T , and the “horizontal” partial order on VT by
ET . For (u, v) ∈ ET we call u the parent of v and v a child of u.

For n ∈ N, put [n] := {0, . . . , n} and 〈n〉 := {1, . . . , n}.
Let Tree(n) denote the set of trees with vertex set 〈n〉 and let Brace(n) be the free k-module on Tree(n)

endowed with the Sn-action given by permuting the vertices, i.e., T σ is the tree defined by replacing
vertex i in T by σ−1(i). The operadic composition on Brace is based upon substitution of trees, as follows.
For trees T ∈ Tree(m), T ′ ∈ Tree(n) and 1 ≤ i ≤ m, we denote by Ext(T, T ′, i) ⊆ Tree(m+ n − 1) the
set of trees extending T by T ′ at i (that is, U ∈ Ext(T, T ′, i) has T ′ as a subtree which upon removal
reduces to the vertex i of T ). We then define

T ◦i T
′ :=

∑

U∈Ext(T,T ′,i)

U.

Underlying every such extension lie two maps 〈n〉
α
→֒ 〈n+m− 1〉

β
։ 〈m〉 acting on the vertices, where α

embeds n vertices consecutively and β contracts the image of α to the vertex i. We call the pair (α, β)
the extension of m by n at i. We refer to [8, §2.2] for more details.

2.2. The operad F2S. The operad F2S encodes homotopy G-algebras [6]. Again, we largely follow the
exposition from [8, §2.3]. Given a set A, a word over A is an element of the free monoid on A. For a
word W = a1a2 . . . ak, correspondiong to the function W : 〈k〉 −→ A : i 7−→ ai, the i-th letter of W is
the couple (i, ai). We will often identify a word with its graph W = {(i, ai) | i ∈ 〈k〉} ⊆ 〈k〉 ×A, writing
(i, ai) ∈W .

For a ∈ A, a letter (i, a) ∈ W is called an occurrence of a in W . The letter (i, a) is a caesura if there
is a later occurrence of a in W , that is, a letter (j, a) with i < j. We say that a ∈ A is interposed in W
if W = . . . ba . . . b . . . . The length of W : 〈k〉 −→ A is |W | = k.

By definition, F2S(n) is the free k-module generated by the words W over 〈n〉 such that:

(1) W : 〈k〉 −→ 〈n〉 is surjective,
(2) W 6= . . . uu . . . (nondegeneracy), and
(3) for any u 6= v ∈ 〈n〉, W 6= . . . u . . . v . . . u . . . v . . . (no interlacing).

The set F2S(n) is graded by setting deg(W ) := |W | − n and naturally carries a Sn-action by permuting
letters, i.e. W σ = σ−1W .

For a word W ∈ F2S(n) and u ∈ 〈n〉, let (iu, u) be the first occurrence of u in W . Then we obtain a
total order u ↓ v ⇐⇒ iu ≤ iv on 〈n〉.

The operadic composition on F2S is based upon merging of words, as follows. For words W ∈
F2S(m),W ′ ∈ F2S(n) and 1 ≤ i ≤ m, we denote by Ext(W,W ′, i) ⊆ F2S(m+n−1) the set of extensions
of W by W ′ at i (that is, X ∈ Ext(W,W ′, i) if up to relabelling and deleting repetitions, W ′ is a subword
of X and upon collapsing the letters from W to i, relabelling and deleting repetitions, we recover W ).

In order to define the composition, we need the sign of an extension.

Sign of Extension. Let W ∈ F2S(m) and let int(W ) be the set of interposed elements of 〈m〉 ordered by
their first occurrence in W . For X ∈ Ext(W,W ′, i) the relabelling gives rise to two maps α : int(W ′) −→
int(X) and γ : int(W ) −→ int(X) where γ := β−1 except if i is interposed in W , then γ(i) := α(a) for
(1, a) the first letter of W ′.

As |int(W )| = deg(W ), an extension X defines a unique (deg(W ), deg(W ′))−shuffle χ and we define

sgnW,W ′,i(X) := (−1)χ

Moreover, it is possible to talk about the boundary of a word, inducing a differential.

Boundary. Given a word W ∈ F2S(n) and a letter (i, a) of W for which a is repeated in W , then define
∂iW ∈ F2S(n) as the word obtained by deleting the letter (i, a) from W (and relabelling). If a is not
repeated, then set ∂iW = 0.
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Sign of Deletion. Given a word W ∈ F2S(n) of length k, then we define sgnW : 〈k〉 −→ {−1, 1} by
setting sgnW (i) = (−1)k if (i, ai) is the k-th caesura of W , and otherwise sgnW (i) = (−1)k+1 if it is the
last occurrence, but the previous occurrence is the k-th caesura of W .

The S-module F2S defines a dg-operad with operadic composition given by

W ◦i W
′ :=

∑

X∈Ext(W,W ′,i)

sgnW,W ′,i(X)X

and boundary given by

∂W :=
∑

i∈〈|W |〉

sgnW (i)∂iW

The following lemma, which we include for the convenience of the reader, shows how F2S encodes the
algebraic operations of a homotopy G-algebra.

Notations. To avoid too large expressions, we leave out certain bracketings by setting as default the
bracketing

a ◦i b ◦j c := (a ◦i b) ◦j c

Moreover, we compress the following

a(◦itat)t := a ◦i1 a1 ◦i2 . . . ◦in an

Lemma 2.1. Let M2 := 12,M1,0 = 1 and M1,k := 121 . . .1(k + 1)1 for k ≥ 1, then F2S is generated by
these elements and the following holds

(1) ∂(M2) = 0

(2) ∂(M1,k) = −(M
(12)
2 ◦2 M1,k−1) +

∑k
i=2(−1)

iM1,k−1 ◦i M2 + (−1)k+1M2 ◦1 M1,k−1

Proof. It is a straightforward computation to determine that M2 and M1,k satisfy these relations.
Let W ∈ F2S(n), we then show that it lies in the suboperad generated by M2, (M1,k)k≥1 using only

the above relations. We prove this by induction on n. If n = 1, then W = 1. So assume n > 1 and apply
a permutation such that the first letter of W is 1, then W is of the form

W = 1W11 . . . 1Wk1Wk+1

where Wi is the image of a non-empty word W ′
i ∈ F2S(ni) under the map γi : 〈ni〉 −→ 〈n〉, except

Wk+1 which is possibly empty. Due to no interlacing we also know that the images Im(γi) are pair-wise
disjoint. Hence, we can apply a permutation to assume that max Im(γi) < min Im(γi′ ) holds for every
i < i′. In this case, we have that

W = M1,k ◦k+1 W
′
k ◦k . . . ◦2 W

′
1

if Wk+1 = ∅, and
W = (M2 ◦2 W

′
k+1) ◦1 (M1,k ◦k+1 W

′
k ◦k . . . ◦2 W

′
1)

otherwise. By induction, this shows that W is generated by M2 and (M1,k)l≥0. �

2.3. The operads NSOp and mNSOp. It is well-known that non-symmetric operads can be encoded
using a colored operad NSOp which can be defined using indexed trees, that is, for q1, . . . , qn ∈ N and
q′ = 1+

∑n
i=1(qi− 1), NSOp(q1, . . . , qn; q

′) is the set of pairs (T, I) where T ∈ Tree(n) and I : ET −→ N

a function such that

• for (u, v) ∈ ET , 1 ≤ I(u, v) ≤ qu
• (t, u), (t, v) ∈ ET and u ⊳T v =⇒ I(t, u) < I(t, v)

We will often write I to denote the indexed tree (T, I). Moreover, NSOp is generated by those trees with
a single edge, that is,

Ei :=

1

2

i ∈ NSOp(q1, q2; q1 + q2 − 1)

for every q1, q2 and 1 ≤ i ≤ q1, with the following pair of relations

(I)

1

2

i ◦2

1

2

j =

1

2

i

3

j

=

1

2

i− 1 + j ◦1

1

2

i for 1 ≤ j ≤ q2 and 1 ≤ i ≤ q1,
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(II)

1

2

i ◦1

1

2

k =

1

23

i k
=





1

2

k − 1 + q2 ◦1

1

2

i





(23)

for 1 ≤ i < k ≤ q1.

Note that these are the well-known associativity relations for non-symmetric operads.

Definition 2.2. Let mNSOp be the N-colored operad generated by NSOp and an elementm ∈ mNSOp(; 2)
satisfying the relation

1

2

1 ◦1 m ◦1 m =

1

2

2 ◦1 m ◦1 m

Remark 2.3. We often write

m

m

1 where we have already filled in the plugged in m’s.

More explicitly, every representative of an element X ∈ mNSOp(q1, . . . , qn; q) is of the form I ◦i1 m◦i2
. . . ◦ik m for I ∈ NSOp and appropriate i1, . . . , ik ∈ N. Due to equivariance, we can always consider a
representative of X of the form

I ◦n+1 m ◦n+1 . . . ◦n+1 m

for I ∈ NSOp(q1, . . . , qn, 2, . . . , 2; q).

Lemma 2.4. Let X = [I ◦n+1 m ◦n+1 . . . ◦n+1 m] ∈ mNSOp(q1, . . . , qn; q), the partial orders <I and ⊳I

on 〈n〉 are independent of the representative of X. We denote them by <X and ⊳X .

Proof. We proceed by induction on k the number of m’s in X . For k = 0 or k = 1, there is nothing to
show, so assume k > 1. It is clear that if the lemma holds for X , then the relations that hold for < and
⊳ for trees, also hold for <X and ⊳X . In particular, if the lemma holds for X and X ′ and (α, β) is the
extension of n by m at i, then for a, b /∈ Im(α) we have

a <X◦iX′ b ⇐⇒ βa <X βb and a ⊳X◦iX′ b ⇐⇒ βa ⊳X βb

Now, let X0,i := X0 ◦n+1

1

2

i such that X = X0,1 ◦n+1 m ◦n+1 m = X0,2 ◦n+1 m ◦n+1 m, then we have

by induction that the lemma holds for X0. Moreover, we have for a, b ∈ 〈n〉 that

a <X0,1 b ⇐⇒ a <X0 b ⇐⇒ a <X0,2 b and a ⊳X0,1 b ⇐⇒ a ⊳X0 b ⇐⇒ a ⊳X0,2 b

which proves the lemma for X . �

2.4. The morphisms (m)NSOp −→ Multi∆. Let C be a small category. We denote by MultiC the
Ob(C)-colored operad for which MultiC(c1, . . . , cn; c) is freely generated as a k-module by n-tuples
(ζ1, . . . , ζn) of C-morphisms with ζi : ci −→ c, Sn acts by permutating labels, and composition is defined
in the obvious way.

Let ∆ be the simplex category. Next, we construct a morphism of operads

NSOp −→ Multi∆

by associating to every indexed tree I in NSOp(q1, . . . , qn; q) a n-tuple ζI in Multi∆(q1, . . . , qn; q) which
assigns to each vertex a, considered as an qa-corolla, a numbering denoting where its inputs are amongst
the inputs of the indexed tree as a whole.

It suffices to define the morphism on the generators Ei ∈ NSOp and show that it respects the relations.

Construction 2.5. Let Ei ∈ NSOp(q1, q2; q1 + q2 − 1) for 1 ≤ i ≤ q1, then we define

ζEi,1(t) :=

{

t t < i

t+ q2 − 1 t ≥ i
and ζEi,2(t) := t+ i− 1

Then, ζEi
∈ Multi∆(q1, q2; q1 + q2− 1), that is, it is a tuple of non-decreasing maps. Moreover, if q2 > 0,

then these are strictly increasing.

We will employ it as in the following example.

Example 2.6. Let A be a k-linear category, then its Hochschild complex is defined as

Cn(A) =
∏

A0,...,An∈A

Homk (A(A1, A0)⊗ . . .⊗A(An, An−1),A(An, A0))
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For a Hochschild cochain φ ∈ Cn(A) and a n-simplex A0
a1← A1

a2← . . .
an−1
← An−1

an← An in A, we have
that φA0,...,An(a1, . . . , an) ∈ A(An, A0).

Let φ1 ∈ Cq1(A) and φ2 ∈ Cq2(A), then each Ei ∈ NSOp(q1, q2; q1 + q2 − 1) determines a cochain
φ1 ◦i φ2 ∈ Cq1+q2−1(A) as follows

(φ1 ◦i φ2)
A0,...,Aq1+q2−1 = φ

AζEi,1
(0),...,AζEi,1

(q1)

1 ◦i φ
AζEi,2

(0),...,AζEi,2
(q2)

2

which we can visualize using n-corollas

A0 A1 Ai−1

Ai−1+q2Ai−1

Ai−1+q2 Aq1+q2−1

φ2

φ1

a1

ai ai−1+q2

aq1+q2−1

A0 Aq1+q2−1

Lemma 2.7. Construction 2.5 extends to a morphism of operads

NSOp −→ Multi∆ : (T, I) 7−→ ζI

Proof. It suffices to verify the relations (I) and (II) of NSOp. These are two simple computations and
thus we only verify the first relation (I) as an example. Let ζ := ζEi

◦2 ζEj
denote the left-hand side,

then we compute

ζ1(t) = ζEi,1(t) =

{

t t < i

t+ q2 + q3 − 2 t ≥ i

ζ2(t) = ζEi,2 ◦ ζEj ,1(t) =

{

t+ i− 1 t < j

t+ i− 1 + q3 − 1 t ≥ j

ζ3(t) = ζEi,2 ◦ ζEj ,2(t) = t+ i− 1 + j − 1

On the other hand, we compute the right-hand side ζ′ := ζEi−1+j
◦1 ζEi

and obtain

ζ′1(t) = ζEi−1+j ,1 ◦ ζEi,1(t) =

{

t t < i

t+ q2 − 1 + q3 − 1 t ≥ i

ζ′2(t) = ζEi−1+j ,1 ◦ ζEi,2(t) =

{

t+ i− 1 t < j

t+ i− 1 + q3 − 1 t ≥ j

ζ′3(t) = ζEi−1+j ,1(t) = t+ i− 1 + j − 1

�

Remark 2.8. In appendix A we have added a generator-free description of this morphism and an alterna-
tive proof of lemma 2.7, which we consider insightful and valuable, especially for concrete computations
of signs in later sections.

Example 2.9. Consider the indexed tree

I =

1

32

1 2

54

1 3

∈ NSOp(3, 0, 4, 1, 0; 4)
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then we compute ζI and obtain

ζI,1
0
1
2
3

0
1
2
3
4

ζI,2
0 0

1
2
3
4

ζI,3
0
1
2
3
4

0
1
2
3
4

ζI,4
0
1

0
1
2
3
4

ζI,5
0 0

1
2
3
4

It is also possible to associate to an element of mNSOp an element of Multi∆.

Lemma 2.10. Let X = [I ◦n+1 m ◦n+1 . . . ◦n+1 m] ∈ mNSOp(q1, . . . , qn; q), then ζI,t : [qt] −→ [q] for
t ∈ 〈n〉 is independent of the representative I of X.

In this case, we write ζX .

Proof. We prove the lemma by induction on k the number of occurrences of m. The cases k = 0 and

k = 1 are trivial, so assume k > 1. Let X0,i := X0 ◦n+1

1

2

i such that X = X0,1 ◦n+1 m ◦n+1 m =

X0,2 ◦n+1 m ◦n+1 m, then by induction and lemma 2.7 we have for t ∈ 〈n〉 that

ζX0,1,t = ζX0,t = ζX0,2,t

which proves the lemma. �

Proposition 2.11. We have morphisms of operads

NSOp −→ Multi∆ : I 7−→ ζI

and its extension
mNSOp −→ Multi∆ : X 7−→ ζX .

Moreover, this last morphism is surjective, but not an isomorphism. This is due to the existence of
vertices with zero inputs which collapse information. We consider a simple example.

Example 2.12. Consider the indexed 2-corolla I :=

1

32

1 2 and its permuted form I(2,3) =

1

23

1 2

as elements of NSOp(2, 0, 0; 0), then they have the same image in Multi∆. Note that this example holds
for both NSOp and mNSOp.

Hence, we can consider mNSOp as a finer operad than Multi∆ and thus encoding more information.

2.5. The morphism Brace −→ NSOps. In order to define the morphism φ : Brace −→ NSOps properly
we need to compile the colored operad NSOp into a graded non-colored operad

NSOps(n) ⊆
∏

p1,...,pn

NSOp(p1, . . . , pn; p).

where an element x ∈ NSOp(p1, . . . , pn; p) is graded as |x| =
∑r

i=1(pi − 1) − (p − 1) = 0 (this is the
suspended grading, whence the subscript) and NSOps(n) is the subspace generated by sequences of
elements with constant grading. The composition on NSOps is derived from the composition of NSOp
where it is set to 0 when the colors do not match. Note in particular that the Sn-action on NSOps(n) is
affected by this grading: permuting two vertices i and j introduces the signs (−1)(pi−1)(pj−1).

Definition 2.13. Let (T, I) ∈ NSOp(p1, . . . , pn; p), then (T, I) is a coloring of T and we write Clr(T, p1, . . . , pn)
as the set of all such colorings of T .

In order to define the sign sgnT (I) for T ∈ Brace(n), we use the morphism of operads

NSOp −→ Multi∆ : (T, I) 7−→ ζI

and base this definition on the sign sgnQ(ζ, I) from [8, Def. 4.20].

Construction 2.14. We work with the following alphabet

1i, . . . , (pi − 1)i

for i = 1, . . . , n and define the word

Js(p1, . . . , pn) = 11 . . . (p1 − 1)1 . . . 1n . . . (pn − 1)n

We define a second word Js
T (I) having in the ζI,k(i)-th position ik for 1 ≤ i ≤ qk− 1. Note that we start

from position 1 for Js
T (I) (instead of 0).
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Definition 2.15. For I ∈ NSOp(p1, . . . , pn; p) where we replace those pi = 0 by 2, we define sgnT (I) as
the sign of the shuffle transforming Js(p1, . . . , pn) to Js

T (I).

Theorem 2.16. We have a morphism of operads

φ : Brace −→ NSOps : T 7−→





∑

I∈Clr(T,p1,...,pn)

sgnT (I)(T, I)





p1,...,pn

.

Proof. Per definition of sgnT (I) we see that φ is equivariant. Hence, we only need to verify that
sgnT◦1T ′(I◦1I ′) = sgnT (I) sgnT ′(I ′) for T ∈ Brace(n), T ′ ∈ Brace(m) and I ∈ Clr(T, p1, . . . , pn) and I ′ ∈
Clr(T ′, p′1, . . . , p

′
m). This equation holds as we can decompose the shuffle χ′′ : Js(p′1, . . . , p

′
m, p2, . . . , pn) 

JT◦iT ′(I ◦i I ′) into two shuffles

Js(p′1, . . . , p
′
m, p2, . . . , pn)

χ′

 Js
T ′(I ′)Js(p2, . . . , pm)

χ
 Js

T◦1T ′(I ◦1 I
′)

where χ and χ′ are the corresponding shuffles determining sgnT (I) and sgnT ′(I ′). �

2.6. The morphism F2S −→ mNSOpst. In order to define the morphism φ̄ : F2S −→ mNSOpst
properly, we again need to compile the colored operad mNSOp to obtain a graded non-colored operad

mNSOpst(n) ⊆
∏

q1,...,qn,q

mNSOp(q1, . . . , qn; q)

where an element x ∈ mNSOp(q1, . . . , qn; q) is graded as deg(x) =
∑r

i=1 qi − q (standard grading) and
mNSOpst(n) is generated by the sequences of constant grading. The composition on mNSOpst is derived
from the composition of mNSOp where it is set to 0 when the colors do not match. Note in particular
that the Sn-action on mNSOpst(n) is affected by this grading: permuting two vertices i and j introduces
the sign (−1)qiqj .

2.6.1. Colorings.

Definition 2.17. Let X := [I ◦n+1m◦n+1 . . .◦n+1m] ∈ mNSOp(q1, . . . , qn; q) for I having n+k vertices,
then X is a coloring of W ∈ F2S(n) if

• each vertex n+ 1, . . . , n+ k has exactly two children in I
• for u, v ∈ 〈n〉 holds

(1) u <X v ⇐⇒ W = . . . u . . . v . . . u . . .
(2) u ⊳X v ⇐⇒ every occurrence of u in W is left of every occurrence of v in W .

We write Clr(W, q1, . . . , qn) for the set of all such colorings for W .

Remark 2.18. An element X ∈ Clr(W, q1, . . . , qn) has n − deg(W ) − 1 many m’s plugged in. Hence,
X ∈ mNSOp(q1, . . . , qn;

∑n
i=1(qi − 1) + n− deg(W )).

We give some examples.

Example 2.19. The following three elements of mNSOp

m

21

1 2 ∈ mNSOp(q1, q2; q1 + q2), m

32

1 2

1

i

∈ mNSOp(q1, q2, q3; q1 + q2 + q3 − 1) for 1 ≤ i ≤ q1

and

m

54

1 2

m

3

1 2

1

2

j k

∈ mNSOp(q1, ..., q5;

5
∑

i=1

qi − 2) for 1 ≤ j < k ≤ q1

color respectively the words

12 ∈ F2S(2), 1231 ∈ F2S(3) and 1213451 ∈ F2S(5).



OPERADIC STRUCTURE ON THE GERSTENHABER-SCHACK COMPLEX FOR PRESTACKS 9

Note however that not all elements of mNSOp color a word of F2S: the following set of elements

m

1

r ∈ mNSOp(q1; q1 + 1)

for r ∈ {1, 2}, colors no word in F2S because the vertex plugged by m does not have two children.

Lemma 2.20. Definition 2.17 is well-defined, that is, it is independent of the chosen representative I
of X.

Proof. Due to lemma 2.4, both <X and ⊳X are well-defined. We show that the condition stipulating that
all vertices of I that are plugged by m’s have exactly two children, is independent of the representative of

X . Thus, suppose I = I0 ◦k

1

2

1 for some I0 ∈ NSOp, such that both vertices k and k+1 of I are plugged

by m’s in X . Due to the relations in mNSOp, X can equivalently be represented using I ′ := I0 ◦

1

2

2 . In

this case, we have that vertices k and k + 1 each have exactly 2 children in I iff vertex k has exactly 3
children in I0 iff vertices k and k + 1 each have exactly 2 children in I ′. �

We construct a word for every element of mNSOp satisfying the above criteria.

Construction 2.21. Let X := [I ◦n+1 m ◦n+1 . . . ◦n+1 m] ∈ mNSOp(q1, . . . , qn; q) such that each
vertex a > n in I has exactly two children, then we construct a word WX ∈ F2S(n) such that X ∈
Clr(WX , q1, . . . , qn, q).

• To every tree T we can associate a word WT ∈ F2S(n+ k) (see [8, §2.3]).
• Suppose for X0 ∈ mNSOp such that X0 ◦n+1 m = X we have an associated word WX0 ∈

F2S(n+1), then letWX be the word given by deleting all occurrences of n+1. ThenWX ∈ F2S(n)
because n+ 1 had two children, so no degeneracy can occur.

We consider an example of this procedure.

Example 2.22. We consider the element

m

32

1 2

1

i

∈ mNSOp(q1, q2, q3; q1 + q2 + q3 − 1)

for some 1 ≤ i ≤ q1 from example 2.19 and show how construction 2.21 assigns a word. First, we
associate to the indexed tree

4

32

1 2

1

i

∈ NSOp(q1, q2, q3, 2; q1 + q2 + q3 − 1)

the word 1424341 and then delete all occurrences of 4 as it is plugged by an instance of m. As a result,
we obtain the word 1231.

Lemma 2.23. For X ∈ mNSOp(q1, . . . , qn; q) we have X ∈ Clr(WX , q1, . . . , qn) and if X ∈ Clr(W, q1, . . . , qn),
then W = WX .

Proof. This clearly holds for X = I ∈ NSOp(q1, . . . , qn; q). Assume the lemma holds for X0 ∈ mNSOp
and X = X0 ◦n+1 m, then WX0 = W0(n+ 1)W1(n+ 1)W2(n+ 1)W3 for W0 and W3 possibly empty. In
this case, WX = W0W1W2W3 and it is easy to see that X ∈ Clr(WX , q1, . . . , qn).

Now reversely, if X ∈ Clr(W, q1, . . . , qn) and a ⊳ b are the two children of n + 1 in X0, then W =
W0W1W2W3 where W1 = a . . . a,W2 = b . . . b and W0 and W3 are possibly empty. In that case, X0 ∈
Clr(W0(n + 1)W1(n + 1)W2(n + 1)W3, q1, . . . , qn, 2) and thus by induction WX0 = W0(n + 1)W1(n +
1)W2(n+ 1)W3. Hence, WX = W0W1W2W3 = W . �

Lemma 2.24. Let X ∈ Clr(V, q1, . . . , qn, q) and Y ∈ Clr(W, q′1, . . . , q
′
m, qi), then there exists a unique

U ∈ Ext(V,W, i) such that X ◦i Y ∈ Clr(U, q1, . . . , q
′
1, . . . , q

′
m, . . . , qn, q)
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Proof. By construction 2.21 we obtain a word U ∈ F2S(n+m− 1) such that Z := X ◦i Y ∈ Clr(U, . . .).
We show that U ∈ Ext(V,W, i): let Uα be the word obtained from deleting from U occurrences of
vertices not in the image of α and eliminating consecutive repetitions (uu 7→ u). It is easy to check that
W = . . . u . . . v . . . u . . . iff Uα = . . . α(u) . . . α(v) . . . α(u) . . ., and that all occurrences of u are left to those
of v in W iff the same holds for α(u) and α(v) in Uα.

Let Uβ be the word obtained from U by relabelling by β and eliminating consecutive repetitions. To
verify that Uβ = V is straight forward, except in the following case: Uβ = . . . i . . . β(u) . . . i . . . where
β(u) 6= i. In this case, there exist v, v′ such that U = . . . α(v) . . . u . . . α(v′) . . .. Now, we argue that
there exists a vertex v′′ such that α(v′′) <Z u. If neither α(v) nor α(v′) do, then U implies that
α(v) ⊳Z u ⊳Z α(v′). As α(v) and α(v′) are part of the same subtree α(Y ), i.e. the image of Y under α
in Z, there must be some vertex a in the tree underlying α(Y ) (possibly plugged by m) such that a lies
underneath u. As Y is a coloring of a word, the conditions imply that a is not plugged by an instance of
m (otherwise it would not have two children in Y ). As a result, there is some vertex v′′ in Y such that
α(v′′) = a <Z u. Thus, i <X β(u) which verifies that V = . . . i . . . β(u) . . . i . . .. This clearly also holds
reversibly. �

Lemma 2.25. Let U ∈ Ext(V,W, i) and Z ∈ Clr(U, q1, . . . , q
′
1, . . . , q

′
m, . . . , qn, q), then there exist unique

colorings X ∈ Clr(V, q1, . . . , qn, q) and Y ∈ Clr(W, q′1, . . . , q
′
m, qi) such that Z = X ◦i Y .

Proof. Let Z = [I ′′ ◦n+mm◦n+m . . .◦n+mm] with l+k added m’s. The word W can be uniquely written
as

W = W1 . . .Wt

where two subwords Wj and Wj′ do not share any occurrence of the same number, and Wj is of the form
aj . . . aj . As Z is a coloring of U , we have that α(a1) ⊳Z . . . ⊳Z α(at) and no vertex of Im(α) lies under
any aj . In this case, there exists some vertex a ∈ {n+m, . . . , n+m+ k + l− 1} such that a ≤I′′ α(aj)
which is ≤I′′-maximal for these conditions (otherwise when applying β to U we will not obtain V ).

Let I ′ be the minimal subtree of I ′′ on the root a containing Im(α). By contracting this subtree to a
point we obtain a tree I such that, after permutation of some vertices, we obtain I ◦i I ′ = I ′′. Consider
also the permutation such that Z = [I ′′ ◦m+i m ◦m+i . . . ◦m+i m ◦n+m m ◦n+m . . . ◦n+m m].

It now suffices to show that X := [I ◦n+1 m ◦n+1 . . . ◦n+1 m] ∈ Clr(V, . . .) and Y := [I ′ ◦m+1

m ◦m+1 . . . ◦m+1 m] ∈ Clr(W, . . .), which is a straight forward computation using the facts X ◦i Y = Z,
Z ∈ Clr(U, . . .) and U ∈ Ext(V,W, i). �

2.6.2. Signs. In order to define a sign sgnW (X) for W ∈ F2S(n) and X ∈ Clr(W, q1, . . . , qn) we use the
morphism of operads

NSOp −→ Multi∆ : (T, I) 7−→ ζI

which extends to

mNSOp −→ Multi∆ : X 7−→ ζX

We base this definition of the sign on the sign sgnQ(ζ, I) defined in [8, §4.7].

Lemma 2.26. Let X ∈ Clr(W, q1, . . . , qn; q) for W ∈ F2S(n) and qi > 0, then ζX is a coloring of W in
the sense of [8, Def. 4.13], that is,

• ζX ∈ Multi∆+,
•
⋃n

i=1 Im(ζX,i) = [q]
• for each a ∈ 〈n〉 there exists a function πa : [qa] −→W such that

(1) the image of πa is the set of occurrences of a in W ,
(2) for an (i, a) ∈ W , ζX,a(π

−1
a (i, a)) is an interval

(3) if W = . . . ab . . ., then

max ζX,a(π
−1
a (i, a)) = min ζX,b(π

−1
b (i+ 1, b))

Proof. We first show it holds for X = (T, I) ∈ NSOp by induction on the number of vertices: let

I =

u

. . .

ik

I1 Ik

i1

be its decomposition into its root u with maximal subtrees Ii. In this case, we haveW = uW 1u . . . uW ku
where the subwords Wi represent the subtrees Ii. Let γi : 〈ki〉 →֒ 〈n〉 be the maps embedding the tree
Ii0 onto Ii in I and Ii0 ∈ Clr(W i

0 , . . .), then they extend to a map γi : W
i
0 →֒W inserting W i

0 as W i into
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W . By induction, the lemma holds for Ii0 ∈ Clr(W i
0 , . . .). Let (p1, u), . . . , (pk+1, u) be all the occurrences

of u in W , then we define

πγi(a) = γi ◦ π
Ii
0

a and πu(t) =











(p1, u) t < i1

(pj , u) ij−1 ≤ t < ij

(pk+1, u) ik ≤ t

then it is easy to verify that these satisfy the above conditions.
Now assume X = [X0 ◦n+1m] such that the lemma holds for X0 ∈ Clr(WX0 , . . .), then WX is obtained

from WX0 by deleting all occurrences of (n+1). As the vertex n+1 has exactly two children in X0 and

qn+1 = 2, we still have that
⋃n

i=1 Im(ζX,i) =
⋃n+1

i=1 Im(ζX0,i) = [q] and that

max ζX0,a(π
−1
a (i, a)) = min ζX0,b(π

−1
b (i, b))

for W = . . . ab . . .. Hence, ζX satisfies the lemma. �

Let us define analogously the sign corresponding to the horizontal part of sgnQ(ζX , I).

Construction 2.27. We work with the following alphabet

0i, . . . , (qi − 1)i

for i = 1, . . . , n and define the word

J(q1, . . . , qn) = 01 . . . (q1 − 1)1 . . . 0n . . . (qn − 1)n

The second word JW (X) is the concatenation of two words J0,W (X) and J1,W (X) defined as follows

• J0,W (X) consists of all 0k for k interposed in W , put in reverse ↓-order.
• J1,W (X) has in the ζX,k(i)-th position ik for 1 ≤ i ≤ qk − 1 for k interposed, and in the ζI,k(i)

position ik for 0 ≤ i ≤ qk − 1 for k not interposed. Note that we start from position 0.

Definition 2.28. For X ∈ mNSOp(q1, . . . , qn; q) where we replace those qi = 0 by 2, we define sgnW (X)
as the sign of the shuffle transforming J(q1, . . . , qn) to JW (X).

Example 2.29. Consider the words

W = 13121, W ′ = 1231

and colorings

X =

1

23

i j , X ′ =

1

3

m

2

k

1 2

for which we calculate the words JW (X) and JW ′(X ′) and their corresponding signs. In the first case,
we have

JW (X) = 030201 . . . (i− 1)113 . . . (q3 − 1)3i1 . . . (j − 1)112 . . . (q2 − 1)2j1 . . . (q1 − 1)1

which corresponds to the sign sgnW (X) = (−1)(q2−1)(q1−j)+(q3−1)(q1−i)+q3q2+q3−1. For the second case,
we calculate

JW ′(X ′) = 0201 . . . (k − 1)112 . . . (q2 − 1)203 . . . (q3 − 1)3k1 . . . (q1 − 1)1

which corresponds to the sign sgnW ′(X ′) = (−1)(q2+q3)(q1−k)+q1 . Note in particular that in JW ′(X ′) the
letter 03 is not taken to the front of the word as 3 is not interposed in W ′.

Lemma 2.30. Let X ∈ Clr(W, q1, . . . , qn) and X ′ ∈ Clr(W ′, q′1, . . . , q
′
m), and W ′′ ∈ Ext(W,W ′, 1), then

sgnW (X) sgnW ′(X ′) = sgnW ′′ (X ◦1 X ′) sgnW,W ′,1(W
′′).

Proof. We can assume that all qi and q′j are not zero. We can decompose sgnW (X) in three components

• sign of the shuffle σ shuffling J0,W (X) to 0v1 . . . 0vk for v1 < . . . < vk the interposed vertices of
X ,

• sign of the shuffle τ shuffling J1,W (X) to concatenation of 1i . . . (qi − 1)i for i interposed and
0i . . . (qi − 1)i for i not interposed. We call this latter sequence J int

W (q1, . . . , qn).
• sign of the shuffle ρ shuffling

0v1 . . . 0vkJ
int
W (q1, . . . , qn) J(q1, . . . , qn)



OPERADIC STRUCTURE ON THE GERSTENHABER-SCHACK COMPLEX FOR PRESTACKS 12

We add ′ and ′′ to denote the correspondings shuffles for X ′ and X ′′ := X ◦1 X ′.
First we have that (−1)σ

′′

= (−1)σ+σ′

sgnW,W ′,1(W
′′) per definition of sgnW,W ′,1(W

′′). Further we

clearly have (−1)τ
′′

= (−1)τ+τ ′

by simply applying them one after the other and renaming using α and
β−1

J1,W ′′(X) J1,W ′JW (q2, . . . , qn) JW ′(q′1, . . . , q
′
m)JW (q2, . . . , qn)

as ζX′′ = ζX ◦1 ζX′ . We also have that (−1)ρ
′′

= (−1)ρ+ρ′

because the length of the sequence
J int
W ′ (q′1, . . . , q

′
m) is q1 − 1 if 1 is interposed, and q1 if 1 is not interposed. �

2.6.3. The morphism.

Proposition 2.31. We have a morphism of graded operads

φ̄ : F2S −→ mNSOpst : W 7−→





∑

X∈Clr(W,q1,...,qn)

sgnW (X)X





q1,...,qn

Proof. By definition of sgnW (X) the above linear maps are equivariant. By lemma 2.24, 2.25 and 2.30
they define a morphism of graded operads. �

We make mNSOpst into a dg-operad with the hochschild differential, then φ will be a morphism of
dg-operads.

Definition 2.32. Define for every q ∈ N the element

(1) Dq =

m

1

2 +

q
∑

i=1

(−1)i

1

m

i + (−1)q+1

m

1

1 ∈ mNSOp(q; q + 1)

which compile into an element of degree −1

D := (Dq)q≥0 ∈ mNSOpst(1).

We consider the associated derivation

∂D(X) := D ◦1 X − (−1)deg(X)
n
∑

i=1

X ◦i D

for X ∈ mNSOpst(n).

Proposition 2.33. ∂D defines a differential making mNSOp into a dg-operad, for which holds

∂D
(

φ̄(W )
)

= φ̄ (∂(W ))

Proof. The first part follows directly if D ◦1 D = 0 which is an easy computation (see [6, Prop. 2]).
In order to prove the second part we only need to show this for the generators of W , i.e. 12 and

121 . . .1k1 for k ≥ 1.

• For q1, q2 ∈ N, it is easy to compute that

∂D
(

φ̄(12)
)

= ∂D





m

21

1 2



 = 0

in mNSOp(q1, q2; q1 + q2).
• For q1, . . . , qk ∈ N, we also have

φ̄(121 . . . 1k1) =
∑

1≤i1<...<ik−1≤q1

(−1)ǫ

1

. . .

ik−1

2 k

i1
where ǫ =

k
∑

j=2

(qj − 1)(q1 − ij +
∑

l>j

(ql − 1))

and

∂(121 . . .1k1) = −2131 . . .1 +
k−1
∑

i=2

(−1)i1 . . . 1i(i+ 1)1 . . . 1 + (−1)k1 . . . 1k

for which it is also a standard computation to see that ∂D(φ̄(121 . . .1k1)) = φ̄(∂(121 . . .1k1))
(see [6, Thm 3]).

�

Theorem 2.34. We have a morphism of dg-operads

φ̄ : F2S −→ mNSOpst
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Proof. This is the direct consequence of propositions 2.31 and 2.33. �

3. The Gerstenhaber-Schack Complex For Prestacks

Let (A,m, f, c) be a prestack over a small category U and let CGS(A) be the associated Gerstenhaber-
Schack complex as defined in [2] (see §3.1). In loc. cit., a homotopy equivalence CGS(A) ∼= CC(A!) is
constructed with the Hochschild complex CC(A!) of the Grothendieck contruction A! of A. Through
homotopy transfer, this allows to endow the GS-complex with an L∞-structure. However, it is desirable
to have a direct description available of this structure, without reference to transfer.

In the case of a presheaf, originally considered by Gerstenhaber and Schack, in [8], Hawkins introduces
an operad Quilt ⊆ F2S⊗H Brace which he later extends to an operad mQuilt acting on the GS-complex.
These operads are naturally endowed with L∞-operations as desired. The action of Quilt on the GS-
complex considered by Hawkins only involves the restriction functors f of the presheaf, the multiplication
m being incorporated later on in mQuilt. Unfortunately, the way in which functoriality of f is built into
these actions, does not allow for an extension to twisted presheaves or prestacks.

In our solution for the prestack case, we propose to use Quilt in a fundamentally different way in rela-
tion to the GS-complex, but still allowing us to make use of the naturally associated L∞-structure. In this
section we capture the higher structure of CGS(A) by introducing the operad Patch ⊆ mNSOp⊗H NSOp
(see §3.3) over which the bicomplex C•,•(A), of which CGS(A) is the totalisation, is shown to be an
algebra (see Theorem 3.24). Next, we construct a morphism Quilt −→ Patchs (see Proposition 3.27) as
a restriction of

φ̄⊗H φ : F2S⊗H Brace −→ mNSOpst⊗H NSOps .

This morphism is such that the resulting composition

R : Quilt −→ End(sCGS(A))

incorporates the multiplications m and the restrictions f . Note that in Hawkins’ approach to the presheaf
case, the initial action of Quilt on End(sCGS(A)) only incorporates the restrictions. As far as the
structure of both approaches goes, the auxiliary operad Patch we use is the counterpart of the operad
ColorQuilt from [8, Def. 4.6].

In §4, we will further extend the action R in order to incorporate the twists.

3.1. The GS complex. In this section, we recall the notions of prestack and its associated Gerstenhaber-
Schack complex, thus fixing terminology and notations. We use the same terminology as in [2], [12].

A prestack is a pseudofunctor taking values in k-linear categories. Let U be a small category.

Definition 3.1. A prestack A = (A,m, f, c) over U consists of the following data:

• for every object U ∈ U , a k-linear category (A(U),mU , 1U ) where mU is the composition of
morphisms in A(U) and 1U encodes the identity morphisms of A(U).

• for every morphism u : V −→ U in U , a k-linear functor fu = u∗ : A(U) −→ A(V ). For u = 1U
the identity morphism of U in U , we require that (1U )

∗ = 1A(U).
• for every couple of morphisms v : W −→ V, u : V −→ U in U , a natural isomorphism

cu,v : v∗u∗ −→ (uv)∗.

For u = 1 or v = 1, we require that cu,v = 1. Moreover, the natural isomorphisms have to satisfy
the following coherence condition for every triple w : T −→W , v : W −→ V and u : V −→ U :

cu,vw(cv,w ◦ u∗) = cuv,w(w∗ ◦ cu,v).

Given such a prestack A, we have an associated Gerstenhaber-Schack complex CGS(A). In [2] this is
defined as the totalisation of a bicomplex C•,•(A). We first review some notations.

Notations. Let σ = (U0
u1→ U1 → . . .

up

→ Up) be a p-simplex in the category U , then we have two functors
A(Up) −→ A(U0), namely

σ# := u∗
1 ◦ . . . ◦ u

∗
p and σ∗ := (up ◦ . . . ◦ u1)

∗

For each 1 ≤ k ≤ p− 1, denote by Lk(σ) and Rk(σ) the following simplices

Lk(σ) = (U0
u1→ U1 → . . .

uk→ Uk)

Rk(σ) = (Uk

uk+1
→ Uk+1 → . . .

up

→ Up)
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and we consider the following natural isomorphisms

cσ,k = cuk...u1,up...uk+1 : (Lkσ)
∗(Rk(σ))

∗ −→ σ∗

ǫσ,k = u∗
1 . . . u

∗
k−1c

uk,uk+1u∗
k+2 . . . u

∗
p : σ# −→ u∗

1 . . . (uk+1uk)
∗ . . . u∗

p

We write cσ,k,A = cσ,k(A) and ǫσ,k,A = ǫσ,k(A) for A ∈ A(Up).
We also define a set P (σ) of formal paths from σ# to σ∗ inductively. A formal path is finite sequence

of couples (τ, i) consisting of a simplex σ and a natural number i. We set

P (u1, u2) := {((u1, u2), 1)}

and

P (σ) := {(r1, . . . , rp−2, (σ, i)) : 1 ≤ i ≤ p− 1 and (r1, . . . , rp−2) ∈ P (∂iσ)}

where ∂i denotes the ith face-operator of the nerve Np(U). Given such a formal path r = (r1, . . . , rp−1)
we define its sign

(−1)r =

p−1
∏

i=1

(−1)ri where (−1)(σ,i) = (−1)i.

By interpreting the data (σ, i) as the natural isomorphism ǫσ,i, every formal path r ∈ P (σ) induces a
sequence of natural isomorphisms r ∈ Np−1(Fun(A(Up),A(U0))). Note that ǫ(u1,u2),1 = cu1,u2 and its
associated sign is −1.

Let St,p−1 denote the set of (t, p− 1)-shuffles, then given a formal path r ∈ P (σ), a shuffle β ∈ St,p−1

and a tuple a = (A0
a1← A1 ← . . .

at← At) ∈ Nt(A(Up)) let β(a, r) ∈ Np−1+t(A(U0)) be its shuffle product
with respect to evaluation of functors as defined in [2, Ex. 3.2, Ex. 3.4].

Here, we give a more explicit definition of β(a, r): first we construct inductively a sequence (b1, . . . , bt+p−1)
which formally represents a sequence of morphisms in A(U0). Every bi is either of the form (τ, ai, Ai−1)
or (ri, Aj) for τ a simplex, ai and Aj respectively a morphism and an object occurring in a, and ri an
element of the formal path r. Define

bt+p−1 =

{

(σ, at, At−1) if β(t) = t+ p− 1

(rp−1, At) if β(t+ p− 1) = t+ p− 1

then for 1 < i ≤ t+ p− 1, we have two cases: if bi+1 = (τ, aj , Aj−1) for some j, then define

bi =

{

(τ, aj−1, Aj−2) if β(j − 1) = i for j ≤ t

(rk, Aj−1) if β(t+ k) = i

If bi+1 = (rk, Aj) for rk = (τ, l), then define

bi =

{

(∂lτ, aj , Aj−1) if β(j) = i for j < t

(rk−1, Aj) if β(t+ k − 1) = i

Finally, we define β(a, r) as the realization b = (B0
b1← B1 ← . . .

bt← Bp−1+t) of b where bi = τ#aj if

bi = (τ, aj , Aj) and bi = rk(Aj) if bi = (rk, Aj).

Definition 3.2. Let p, q ≥ 0, then define

Cp,q(A) =
∏

σ∈Np(U)

∏

A∈A(Up)q+1

Hom(

q
⊗

i=1

A(Up)(Ai, Ai−1),A(U0)(σ
#Aq, σ

∗A0))

and set

Cn
GS(A) =

⊕

p+q=n

Cp,q(A)

The differential d on the GS-complex is defined for θ ∈ Cp,q(A) as

d(θ) =

q+1
∑

j=0

dj(θ)

where dj : C
p,q(A) −→ Cp+j,q+1−j(A) is defined as
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•

d0(θ)
σ(A)(a) = mU0(σ∗(a1), θ

σ(A1, . . . , Aq+1)(a2, . . . , aq+1))

+

q
∑

i=1

(−1)iθσ(A0, . . . , Ai−1, Ai+1, . . . , Aq+1)(a1, . . . ,m
Up(ai, ai+1), . . . , a1)

+ (−1)q+1mU0(θσ(A0, . . . , Aq)(a1, . . . , aq), σ
#(aq+1))

•

d1(θ)
σ(A)(a) = (−1)p+q+1mU0(cσ,1,A0 , u∗

1(θ
∂0σ(A)(a)))

+

p
∑

i=1

(−1)p+q+1+imU0(θ∂iσ(A)(a), ǫσ,i,Aq )

+ (−1)qmU0(cσ,p,A0 , θ∂p+1σ(A)(u∗
p+1a1, . . . , u

∗
p+1aq))

•

dj(θ)
σ(A)(a) =

∑

r∈P (Rp(σ))
β∈Sq−j+1,j−1

(−1)r+β+q−j+1mUp+j(cσ,p,A0 , θLp(σ)(B)(β(a, r))

for σ = (u1, . . . , up+j) ∈ Np+j(U)(U0, Up+j), a = (a1, . . . , aq−j+1) where ai ∈ A(Up+j)(Ai, Ai−1) and
such that B is the sequence of objects underlying β(a, r).

We will also be interested in the subcomplex CGS(A) ⊆ CGS(A) of normalized and reduced cochains
which is shown to be quasi-isomorphic to the GS complex (see [2, Prop. 3.16]). A simplex σ = (u1, . . . , up)
is reduced if ui = 1Ui

for some 1 ≤ i ≤ p. A cochain θ = (θσ(A))σ,A ∈ CGS(A) is reduced if θσ(A) = 0

for every reduced simplex σ. A simplex a = (a1, . . . , aq) in A(U) is normal if ai = 1U for some 1 ≤ i ≤ q.
A cochain θ is normalized if θσ(A)(a) = 0 for every normal simplex a in A(Up). We come back to this
in section §4.

Elements of the GS complex have a neat geometric interpretation as rectangles: for θ ∈ Cp,q(A) and
the data (σ,A, a) from above, we can represent θσ(A)(a) as the rectangle of data

A1A0 AqAq−1

a1 aq

u∗
2 . . . u

∗
pAq

σ#Aq

u∗
pAq

u∗
1

u∗
p

σ∗A0

σ∗

θσ(A)(a1, . . . , aq)

θσ(A)
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Similarly, we can draw different components of the differential d using rectangles, providing more insight
in its rather technical definition. For the hochschild component d0 we have

d0(θ)
σ(A) =

a1 aq+1

u∗
1

u∗
p

θσ(A)

a2

mU0

σ∗σ∗
+

q
∑

i=1

(−1)i
θσ(A)

mUp

u∗
1

u∗
p

a1 aq+1

ai ai+1

σ∗

+ (−1)q+1

a1 aq+1

θσ(A)

a2

mU0

σ∗ σ#

u∗
1

u∗
p

The first component d1 can similarly be drawn as

d1(θ)
σ(A) = (−1)p+q+1

a1 aq

θ∂0σ(A)

mU0

cσ,1,A0

u∗
2

u∗
p+1

u∗
1 u∗

1

σ∗

A0

+

q
∑

i=1

(−1)p+q+i+1

a1 aq

θ∂pσ(A)

mU0

cui,ui+1(Aq)

u∗
1

u∗
p+1

σ∗

u∗
i

u∗
i+1

Ri+1σ
#

Li−1σ
#

Aq

+ (−1)q

a1 aq

θ∂0σ(A)

mU0

cσ,p,A0

u∗
p

u∗
p+1u∗

p+1

u∗
1

u∗
p+1

σ∗

Finally, we will draw d2 as an example from which it is easy to deduce the higher components dj for
j > 2. Namely, we have

d2(θ)
σ(A) =

q
∑

i=1

(−1)r+β+q−2+1

a1 aq−1

θLp(σ)(B)(a1, . . . , c
up+1,up+2(As), . . . , aq−1)

mU0

cσ,p,A0

u∗
p

u∗
p+2

(up+2up+1)
∗

u∗
1

u∗
p+1u

∗
p+2

σ∗

cup+1,up+2(Ai−1)

Ai−1

u∗
p+1

A0
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for shuffle β(q) = i, β(s) = s for s < i and β(s) = s + 1 for s ≥ i, and formal path r = ((up, up+1), 1).
Note in particular that we can draw β(a, r) as follows

u∗
p+2

(up+2up+1)
∗ u∗

p+1u
∗
p+2cup+1,up+2(As)

Ai−1

u∗
p+1

A1A0 Aq−1Aq−2

a1 aq−1
Ai−1

Bi−1B1B0 BqBq−1Bi

u∗
p+2u

∗
p+1

b1 bi bq

where bs = aβ−1(s) for s 6= i, and bi = cup+1,up+2(Ai−1).
We will use this rectangular interpretation as a guide in the next sections.

3.2. Endomorphism operad of a prestack. Although the GS-complex does not have partial compo-
sitions ◦i, its elements θ = (θσ(A))(σ,A) consist of parts that lie in the endomorphism operad End(A).

Definition 3.3. Let Ob(U ,A) be the set consisting of the triples (U,A,A′) for U ∈ U and A,A′ ∈ A(U),
then we define the Ob(U ,A)-colored operad End(A) as

End(A)((U1, A1, A
′
1), . . . , (Un, An, A

′
n); (U,A,A

′)) := Hom(

n
⊗

i=1

A(Ui)(Ai, A
′
i),A(U)(A,A′))

with partial compositions defined by composition of linear maps.

Remark 3.4. Note that θσ(A) ∈ End(A)((Up, A1, A0), . . . , (Up, Aq, Aq−1); (U0, σ
#Aq, σ

∗A0)).

3.3. The Operad Patch. In this section we define an N× N-colored operad Patch ⊆ mNSOp×NSOp.
Its elements encode concrete (planar) patchworks of rectangles of size (pi, qi) to form a rectangle of size
(p, q).

Definition 3.5. Let Patch((q1, p1), . . . , (qn, pn); (q, p)) consists of the elements (X, J) ∈ mNSOp(q1, . . . , qn; q)×
NSOp(p1, . . . , pn; p) such that

(1) a <J b =⇒ a ⊳X b
(2) a <X b =⇒ b ⊳J a

Remark 3.6. Note that in order for Patch not to be empty, we need to allow a multiplication in one of
its coordinates which is not present in the other coordinate.

This has a neat geometric interpretation as well: a (p, q)-rectangle has p inputs on the right-hand
side, q inputs on top and a single output on respectively the bottom and the left-hand side

1 . . . q

1

...

p

We then interpret a patchwork (X, J) as an ordering of these rectangles: the first coordinate X represent
the vertical ordering (from top to bottom) and the second coordinate J the horizontal ordering (from
right to left). The multiplications m form a single exception: they appear only vertically, thus we draw
them as flat rectangles, that is, having no horizontal input and output. From this perspective, the
conditions impose planarity on the patchwork such that we have

below <X above above ⊳J below

left ⊳X right left <J right

Note that when we write down a patchwork using rectangles, possible ‘open spaces’ can appear.
Moreover, it is possible that multiple rectangles are vertically the ‘lowest’ elements due to the insertion
of multiplication elements m. However, horizontally there can only appear a single most left rectangle
which is (horizontally) connected to all other rectangles. We give an example.

Example 3.7. The following pair determines an element in Patch((3, 5), (3, 2), (2, 1), (0, 2); (6, 7))

(X, J) =













m

21

1 2

43

1 3

, 1

2

32

4

4
1












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which we can draw as the following patchwork of rectangles

1 2 3 4 5 6

1

2

3

4

5

6

7

1

2

3 4

m

where the grey areas denote the open spaces.

Lemma 3.8. Patch is a suboperad of mNSOp⊗H NSOp.

Proof. Let (X, J) ∈ Patch((q1, p1), . . . , (qn, pn); (q, p)) and (X ′, J ′) ∈ Patch((q′1, p
′
1), . . . , (q

′
m, p′m); (qi, pi))

and we set X ′′ := X ◦iX ′ and J ′′ := J ◦iJ ′. Let (α, β) be the extension of n by m at i, then for a, b ∈ 〈m〉
we compute

α(a) <X′′ α(b) ⇐⇒ a <X′ b =⇒ b ⊳J′ a ⇐⇒ α(b) ⊳J′′ α(a)

and for c, d /∈ Im(α) we compute

c <X′′ d ⇐⇒ βc <X βd =⇒ βd ⊳J βc ⇐⇒ d ⊳J′′ βc

For c /∈ Im(α) and b ∈ 〈m〉, we have

c <X′′ α(b) =⇒ βc <X i =⇒ i = βα(b) ⊳J βα(b) =⇒ α(b) ⊳J′′ c

and the same reasoning shows α(b) <X′′ c =⇒ c ⊳J′′ α(b). Completely symmetrically, this also shows
that c <J′′ d =⇒ c ⊳X′′ d for c, d ∈ 〈n+m− 1〉. �

We again compile the colored operad Patch to obtain a graded non-colored operad

Patchs(n) ⊆
∏

q1,...,qn,q
p1,...,pn

Patch((q1, p1), . . . , (qn, pn); (q, p))

where an element x ∈ Patch((q1, p1), . . . , (qn, pn); (q, p)) is graded as

|x| =
n
∑

i=1

(qi + pi − 1)− (q + p− 1)

and Patchs(n) is generated as a k-module by the sequences of constant degree. Its composition is
derived from Patch where it is set to 0 when the colors do not match. Note in particular that the
Sn-action on Patch(n) is affected by this grading: permuting two vertices i and j introduces a sign
(−1)(qi+pi−1)(qj+pj−1).

Lemma 3.9. Patchs is a dg-suboperad of (mNSOpst⊗H NSOps, (∂D, Id)).

Proof. It suffices to see that the elements (Dq, 1) ∈ Patch((q, p); (q + 1, p)) for every p, q ∈ N. �

3.4. The morphism Patchs −→ End(sCGS(A)). In this section we make the GS-complex CGS(A)
of a prestack A into a Patchs-algebra. We do so by making its underlying bicomplex C•,•(A) into a
Patch-algebra. We first fix some notations.

Definition 3.10. Let σ = (U0
u1→ U1 → . . .

up

→ Up) be a p-simplex in the category U and ζ : [p′] −→ [p]

a non-decreasing map (or equivalently a non-decreasing sequence), then let ζ be the reflection of ζ, that
is,

ζ(t) := p− ζ(p′ − t)

and define

ζ(σ) := N•(U)(ζ)(σ)

a p′-subsimplex of σ, where N•(U) denotes the nerve construction on U .
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Remark 3.11. Note that we apply the reflection as we count the horizontal inputs of a patchwork from
top to bottom (see example 3.7) instead of bottom to top (see further, example 3.22).

Given a patchwork (X, J) ∈ Patch, we now determine which simplices we need to fill in the ‘open
spaces’ in between the rectangles. We first sketch the idea.

Given a simplex σ in U and a vertex a, we want to determine two sorts of simplices: for every vertical
input i = I(a, b) for some vertex b, we want to determine a simplex σ(a, b) that we place between them.
For the other vertical inputs 1 ≤ i ≤ qa, we determine a simplex σa(i) to place on top of a at input i.
To do so, we determine the set of left-most vertices which do not “surpass” the ith input and that lie
higher than vertex a. In the drawing below, this set consists of the vertices e1, e2 and e3. To calculate
σ(a, b), we restrict this set to those vertices that still lie below vertex b, in this case, the vertices e2 and
e3.

a

b

σ(a, b)

i

σa(i) e1

e2

e3

We observe that each element of the GS complex composes in U the subsimplex corresponding to its
horizontal inputs. Hence, using our auxiliary set, we contract the corresponding subsimplices and obtain
σ(a, b) and σa(i).

Note that we have not yet treated the multiplications m. In order to do so, we have to add the
following complexity. Let X = [I ◦n+1 m ◦n+1 . . . ◦n+1 m] where I is an indexed tree with n+ k vertices,
then we call a vertex a of I non-plugged in X if in X it is not inserted by a multiplication element m. We
continue with the above chosen representation of X where a non-plugged is equivalent to stating a ≤ n.

Definition 3.12. We define a function ↓ : 〈n+ k〉 −→ [n] on the vertices of I which associates to every
vertex a the closest non-plugged vertex in X under or equal to a, or 0 if no such vertex exists. Concretely,

↓ a := max
<I

{y ∈ 〈n〉 : y ≤I a} and ↓ a = 0 if the set is empty

We also set a ⊳J 0 for every vertex a and define

ζJ,a := ζJ,↓ a and ζJ,0 := p

where p is the total number of inputs of J .

Remark 3.13. This is clearly independent of the representative I of X . Moreover, ↓ is for the given
representative I the identity on 〈n〉.

Next, we determine the auxiliary set.

Definition 3.14. Consider a vertex a of I and let b1 ⊳I . . . ⊳I bt be the children of a in I lying in 〈n〉
with is := I(a, bs). We then define

La(i) =











{e ∈ 〈n〉 : e 6⊳I ↓ a and e ⊳J ↓ a} i < i1

{e ∈ 〈n〉 : bs ⊳I e and e ⊳J ↓ a} is ≤ i < is+1

{e ∈ 〈n〉 : bt ⊳I e and e ⊳J ↓ a} it ≤ i

for i ∈ [qa], and

L(a, bs) := {e ∈ 〈n〉 : bs ⊳I e and bs ⊳J e ⊳J ↓ a}

and let minLa(i) and minL(a, bs) be respectively the set of <J -minimal elements of La(i) or L(a, bs).

Remark 3.15. Remark that La(i), L(a, bs) ⊆ 〈n〉 and thus that it contains only vertices which are not
plugged by m. By default, we will set the subsimplex underneath the plugged children of a as empty
(see definition 3.18).

Remark 3.16. Note that the condition e 6⊳I ↓ a appearing in the first case becomes superfluous in the
others.
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Definition 3.17. Let a be a vertex of I and minLa(i) = {e1 ⊳J . . . ⊳J el}, then we have the sequence
of inequalities

0 ≤ ζJ,e1(0) ≤ ζJ,e1(pe1) ≤ . . . ≤ ζJ,el(pel) ≤ ζJ,a(0)

and thus the non-decreasing sequence

(0, 1, . . . , ζJ,e1(0), ζJ,e1(pe1 ), . . . , ζJ,el(0), ζJ,el(pel), . . . , ζJ,a(0))

from which we delete ζJ,ei(pei) if ζJ,ei(pei) = ζJ,ei+1(0) or ζJ,el(pel) = ζJ,a(0). This defines a subsimplex
σa(i) of σ by definition 3.10.

Definition 3.18. Let a, b be vertices of I such that b is a child of a, and minL(a, b) = {e1 ⊳J . . . ⊳J el},
then we have the sequence of inequalities

• if i = I(a, b) for some vertex b ∈ 〈n〉 (non-plugged)

ζJ,b(pb) ≤ ζJ,e1 (0) ≤ ζJ,e1(pe1 ) ≤ . . . ≤ ζJ,el(pel) ≤ ζJ,a(0)

• if i = I(a, b) for some vertex b > n (plugged)

ζJ,b(pb) = ζJ,a(0)

and thus the non-decreasing sequence

(ζJ,b(pb), . . . , ζJ,e1(0), ζJ,e1 (pe1), . . . , ζJ,el(0), ζJ,el(pel), . . . , ζJ,a(0))

from which we delete ζJ,ei(pei) if ζJ,ei(pei) = ζJ,ei+1(0) or ζJ,el(pel) = ζJ,a(0). We also delete ζJ,b(pb) if
it equals ζJ,e1(0). This defines a subsimplex σ(a, b) of σ by definition 3.10.

We consider an example.

Example 3.19. Given the simplex σ = (u1, . . . , u8) and the following patchwork of rectangles

m

m

m

2 1

5
4

3

6 u1

u2

u3

u4

u5

u6

u7

u8

7

we analyse the case for rectangle 6: we have

L6(0) = L6(1) = {1, 3, 4, 5, 7} and minL6(0) = minL6(1) = {1, 3, 5, 7},

L6(2) = L6(3) = {3, 4, 5} and minL6(2) = minL6(3) = {3, 5}

L(6, 1) = {3} and minL(6, 1) = {3}

and thus

σ6(0) = σ6(1) = (u3u2, u5u4, u6, u8u7),

σ6(2) = σ6(3) = (u3u2, u4, u5, u6, u8u7),

σ(6, 1) = (u3u2).

Now, we can assemble for every element of Patch a concrete patchwork of elements of CGS(A) where
the first coordinate determines a vertical patching using the operadic structure and the second component
determines the horizontal patching to fill in and align the corresponding simplices.
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Construction 3.20. Given (X, J) ∈ Patch ((q1, p1) , . . . , (qn, pn) ; (q, p)) and θi ∈ Cpi,qi (A), then we
set θs = m ∈ C0,2 (A) for s = n+ 1, . . . , n+ k.

Let σ be a p-simplex in U and A = (A0, . . . , Aq) (q + 1)-tuple of objects in A (Up), then we define for
every vertex a in I

Θa := θζJ,a(σ)a

(

σa (0)
#
AζI,a(0), . . . , σa (qa)

#
AζI,a(qa)

)

and for every i ∈ 〈qa〉 we make the compositions

• if i = I (a, b) for some vertex b,

Θa ◦i
(

σ (a, b)
# ◦1 Θb

)

• otherwise,

Θa ◦i σa (i)
# (AζI,a(i−1), AζI,a(i)

)

All these compositions together define

L (X, J) (θ1, . . . , θn)
σ (A) ∈ Hom

(

q
⊗

i=1

A (Up) (Ai, Ai−1) ;A (U0)
(

σ#Aq, σ
∗A0

)

)

Lemma 3.21. Construction 3.20 is independent of the representative I of X.

Proof. It suffices to verify the relation on the formal multiplication elements m in mNSOp. This follows
directly from the associativity of the local composition mU of the category A(U) for every U ∈ U . �

Let us work out an example.

Example 3.22. Consider the patching (X, J) from example 3.7. Let θ1 ∈ C5,3(A), θ2 ∈ C2,3(A), θ3 ∈
C1,2(A) and θ4 ∈ C2,0(A), then we compute L(X, J)(θ1, θ2, θ3, θ4) ∈ C7,6(A). Given the simplex
(u1, . . . , u7) ∈ N7(U)(U0, Up) and the objects (A0, . . . , A6) ∈ A(Up), we first compute

Θ1 = θ
(u1,u3u2,u4,u6u5,u7)
1 (A0, A1, A2, A3)

Θ2 = θ
(u2,u3)
2 (u∗

4(u6u5)
∗u∗

7A3, u
∗
4(u6u5)

∗u∗
7A5, u

∗
4(u6u5)

∗u∗
7A6, u

∗
4u

∗
5u

∗
6u

∗
7A6)

Θ3 = θ
(u6u5)
3 (u∗

7A3, u
∗
7A4, u

∗
7A5)

Θ4 = θ
(u5,u6)
4 (u∗

7A6)

Then, given (a1, . . . , a6) where ai ∈ A(Up)(Ai, Ai−1), we finally compute

mU0(Θ1(a1, a2, a3), u
∗
1Θ2(u

∗
4Θ3(u

∗
7(a4), u

∗
7(a5)), u

∗
4(u6u5)

∗u∗
7(a6), u

∗
4Θ4)

which we can draw as follows

A1A0

a1
A2

a2
A3

a3
A4

a4
A5

a5
A6

a6
A6

u∗
2

u∗
3

u∗
4

u∗
5

u∗
6

u∗
7

u∗
1

Θ4

Θ1

Θ2

Θ3

u∗
4 u∗

4 u∗
4

(u6u5)
∗

u∗
1

u∗
7u∗

7u∗
7

mU0

Proposition 3.23.

L(X, J) ◦a L(X
′, J ′) = L(X ◦a X

′, J ◦a J
′)
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Proof. We can assume without loss of generality that a = n as L is clearly equivariant.
Let (X ′′, J ′′) := (X, J) ◦n (X ′, J ′), then we add ′ or ′′ to denote the notions associated to (X ′, J ′) or

(X ′′, J ′′). Let I and I ′ be the underlying trees representing X and X ′ having respectively n + k and

m+ k′ vertices, then let (α, β) be the extension of n+ k by m+ k′ at n. Let (α, β) be the extension of
n by m at n.

We compute

(2) L(X, J)(θ1, . . . , θn−1,L(X
′, J ′)(θn, . . . , θn+m−1))

σ(A)

and show that it equals

(3) L(X ′′, J ′′)(θ1, . . . , θn+m−1)
σ(A)

for σ ∈ Np(U) and A = (A0, . . . , Aq) objects in A(Up).
It is clear that per construction the blocks involved are composed according to X ′′ = X ◦n X ′. Hence

it suffices to verify that they correspond to the blocks Θ′′
x in L(X ′′, J ′′) and that the functors used to fill

in the open spaces, agree.
First, for x a non plugged vertex of I ′′ in X ′′, it is clear that Θ′′

x is either Θβ(x), or Θ
′
α−1(x) evaluated

at σ′ = ζJ,n(σ). Next, we verify the simplices σ′′
i (x). For its ith input, we have the following two cases:

• if x does not lie in the image of (X ′, J ′), then σβx(i) = σ′′
x(i) because if n ∈ minLβx(i) then it

is replaced by α(r′) for r′ the root of J ′ for which holds ζJ′′,α(r′) = ζJ,nζJ′,r′ .

xi

σx(i) = σ′′
x(i)

(X ′, J ′)

r′

n

As a result, in both (2) and (3) we have the term Θβx ◦i σβx(i)
#.

• if x is part of (X ′, J ′), i.e. x = α(x′) for some vertex x′, then minL′′
α(x′)(i) is the union of

minL′
x′(i) and minLn(i

′) for some i′. Hence, we obtain the concatenation of σ′
x′(i) for σ′ =

ζJ,n(σ) and σn(i
′). As ζ′′J′′ = ζJ ◦n ζJ′ , this corresponds exactly to σ′′

x(i).

α(x′)i

σ′
x′(i)

σn(i
′)

Hence, the corresponding term in both calculations agrees.

Next, we calculate σ′′(x, b) for b a child of x in (X ′′, J ′′) that is not plugged. We again have three cases

• if both x and b lie either outside or inside the image of (X ′, J ′), then clearly σ′′(x, b) = σ(βx, βb)
or σ′(α−1x, α−1b) for σ′ = ζJ′,n(σ) due to the previous reasoning and thus the terms agree.

• if b lies in the image of (X ′, J ′), i.e. b = α(b′), and x does not, then b′ is clearly the root of X ′.
As a result, σ′′(x, b) = σ(βx, n) and thus the terms agree.

• if x lies in the image of (X ′, J ′), i.e. x = α(x′), and b does not, then minL′′
α(x′)(i) is the union

of minL′
x′(i) and minLn(i

′) for some i′.

α(x′)i

σx′(i)

σ(n, βb)

b

Hence, we obtain in (2) the concatenation of σ(n, βb) and σ′
x′(i) for σ′ = ζJ,n(σ), which corre-

sponds exactly to σ′′(x, b).

In case either x or b is plugged, we possibly have to apply the functorial property of the restrictions, i.e.

u∗◦mU = mV ◦(u∗⊗u∗) for u : V → U in U , to pull down Θβx = m
UζJ,βx(0) or Θ′

α−1x
= m

UζJ,nζ
J′,α−1x

(0)
.

Specifically, in the following cases
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• let βx lie on top of n in (X, J) and ↓x = α(y) for some vertex y of (X ′, J ′).

α(y)i

τ

σ(βx, βb)

b

x

σβx(j)

In this case, Θβx = m
UζJ,n(0) occurs in (2) and Θ′′

x = m
UζJ,nζ

J′,y
(0) occurs in (3). Using functo-

riality, in (2) we equivalently have τ# ◦mUζJ,n(0) = m
UζJ,nζ

J′,y
(0) ◦ (τ# ⊗ τ#) for an appropriate

simplex τ . As a result they agree.
Next, it is clear from the drawing that σ′′

x(j) is the concatenation of σβx(j) and τ . Moreover,
for some vertex b, we have σ′′(x, b) as the concatenation of σ(βx, βb) and τ , except in the case
that b is plugged as well. In the latter case, we can also pull Θβb in (2) down to Θβx and obtain

m
UζJ,nζ

J′,y
(0) = Θ′′

x = Θ′′
b as in (3).

• let βx lie on top of n, but ↓x /∈ Im(α).

τ

x

α(u′)

↓ x

σ(y, n)

Again, we can pull down Θβx in (2) past both functors τ# and σ(y, n)# and obtain m
UζJ,β ↓ y(0) =

Θ′′
x. The same reasoning as before also holds for the functors σ′′

x(j) and σ′′(x, b) in (3) and its
counterparts σβx(j) and σ(βx, βb) in (2).

• The case where x lies in the image of (X ′, J ′) such that ↓ x /∈ Im(α), is analogous to the previous
one.

This finishes the proof. �

Theorem 3.24. We obtain a morphism of dg-operads

L : Patchs −→ End(sCGS(A), d0).

Proof. The map L : Patch −→ End(C•,•(A)) is clearly equivariant and thus it is a morphism of operads
due to proposition 3.23. Hence, the induced map L : Patchs −→ End(sCGS(A)) is a morphism of
graded operads. Moreover, it is a morphism of dg-operads as L(D, 1) = d0. �

3.5. The morphism Quilt −→ Patchs. In [8], Hawkins defines a suboperad Quilt ⊆ F2S⊗H Brace for
which Quilt(n) is the free k-module generated by (W,T ) ∈ F2S(n)× Tree(n) such that

(1) W = . . . u . . . v . . . =⇒ u 6>T v;
(2) W = . . . u . . . v . . . u . . . =⇒ v ⊳T u.

Here, deg(W,T ) := deg(W ) and the boundary operator is ∂(W,T ) := (∂W, T ).
Insightfully, elements of Quilt can also be drawn as a stacking of rectangles in the plane, as extensively

explained in [8, §3.2]. We will use Quilt in a fundamentally different way by switching the roles of its
first and second component, and thus flipping the rectangles on their side. As such, we also draw the
elements of Quilt on their side. We give an example.

Example 3.25. We consider an example from [8, Ex. 3.2] and flip it on its side as follows








14234, 1 3

2

4









= 1

2

3

4

Note the double line above rectangle 4: this reflects the fact that 3 is not interposed, otherwise the
corresponding word would be 142434.
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By definition, we have Patchs ⊆ mNSOps⊗H NSOpst. In this section, we will construct a morphism
of operads Quilt −→ Patchs as a restriction of

φ̄⊗H φ : F2S⊗H Brace −→ mNSOps⊗H NSOpst .

Lemma 3.26. Let Q = (W,T ) ∈ Quilt, X ∈ Clr(W, q1, . . . , qn) and I ∈ Clr(T, p1, . . . , pn), then (X, I) ∈
Patch.

Proof. Let u, v ∈ 〈n〉, if u <I v, then u <T v and thus W 6= . . . v . . . u . . . and thus every occurrence of u
in W is left of every occurrence of v in W . Hence, u ⊳X v.

The other way around, if u <X v, then W = . . . u . . . v . . . u . . . and thus v ⊳T u which is equivalent
to v ⊳I u. �

We obtain a morphism of graded operads

φ̄⊗H φ : Quilt −→ Patchs

defined as

(φ̄ ⊗H φ)((q1, p1), . . . , (qn, pn))(W,T ) =
∑

X∈Clr(W,q1,...,qn)
I∈Clr(T,p1,...,pn)

sgnW (X) sgnT (I)(−1)
σ(X, I)

where the sign (−1)σ is defined as the Koszul sign obtained from switching

q1, . . . , qn, p1 − 1, . . . , pn − 1 q1, p1 − 1, . . . , qn, pn − 1

This is the consequence of the Hadamard product of two graded operads

Patch((q1, p1), . . . , (qn, pn); (q, p)) ⊆ mNSOp(q1, . . . , qn; q)⊗NSOp(p1, . . . , pn; p)

where we have switched the order of the inputs.
Note in particular that this sign corresponds to the sign defined in [8, §4.7] and that we write

sgnQ(X, J) := sgnW (X) sgnT (J)(−1)
σ.

As a direct consequence of Lemma 3.9 we have the following.

Proposition 3.27. We have a morphism of dg-operads

φ̄⊗H φ : (Quilt, ∂) −→ (Patchs, ∂(D,1))

Corollary 3.28. We have a morphism of dg-operads

R := L ◦ (φ̄⊗H φ) : Quilt −→ End(sCGS(A), d0)

Proof. Immediate from Theorem 3.24 and Proposition 3.27. �

Our action of Quilt on the GS-complex of a prestack is orthogonal to the action constructed in [8,
Thm. 4.26] in the case of presheaves, and thus also new for the latter case. This can be interpreted in
a geometric sense: our action encodes a quilt Q = (W,T ) as a vertical patchwork according to W and
a horizontal patchwork according to T . In Hawkins’ action their roles are reversed, where the role of
the multiplication is filled in by the identity 1u,v : v∗u∗ = (uv)∗. This does not translate to the case of

prestacks due to the occurring twists cu,v : v∗u∗ −→ (uv)
∗

.

4. Incorporating Twists

The morphism R : Quilt −→ End(sCGS(A)) from Corollary 3.28 only involves the multiplication
m and the functors f of the data of a prestack (A,m, f, c). In this section, we will incorporate the
twists c by adding a formal element with certain relations, resulting in the bounded powerseries operad
Quiltb[[c]]. In §4.4, we extend R above to a morphism Rc : Quiltb[[c]] −→ End(sCGS(A)) (see Theorem
4.17). In Hawkins’ approach to the presheaf case, the initial action of Quilt on End(sCGS(A)), which
only involves the restriction maps f , is later extended in order to incorporate the multiplications m.
As far as the structure of both approaches goes, our operad Quiltb[[c]] is the counterpart of the operad
mQuilt from [8, Def. 5.2].

In [8, §7.1], Hawkins constructs a morphisms L∞ −→ Quilt (see §4.2). In §4.2, we establish a more
involved morphism L∞ −→ Quiltb[[c]] (see Theorem 4.10) by extending to an infinite series of higher
components incorporating the element c.

Putting Theorems 4.10 and 4.17 together, we have thus endowed sCGS(A) with an L∞-structure. In
the case of presheaves, this coincides on reduced and normalised cochains with the L∞-structure from
[8, Thm. 7.13].

In the final section 4.5 we briefly discuss the relation of this structure with the deformation theory of
the prestack A.
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4.1. Powerseries operads. In order to obtain an L∞-structure incorporating twists, we will make use
of operads of formal power series.

Definition 4.1. Let O be a graded operad, then define O[x] as the graded operad generated by O and
an element x of degree t and define the subspaces

O[x](n, r) := {γ ∈ O[x](n) : γ has r occurrences of x} ⊆ O[x](n)

which is well-defined as there are no relations on x. Define

O[[x]](n) :=
∏

r≥0

O[x](n, r)

with component-wise Sn-action and write their elements as
∑

r≥0 Qr for Qr ∈ O[x](n, r). For every

1 ≤ k ≤ n the composition of O[x] descends to a map

O[x](n, r) ⊗O[x](n, s) −→ O[x](n, r + s)

which extends to a composition map

(
∑

r≥0

Qr) ◦k (
∑

s≥0

Ps) :=
∑

t≥0

(
∑

i+j=t

Qi ◦k Pj)

We call an element
∑

r≥0 Qr ∈ O[[x]] bounded if the set {deg(Qr) : r ≥ 0} ⊆ Z is bounded. Let Ob[[x]]
be the S-submodule of bounded series which is graded by the series with coefficients of constant degree.

Lemma 4.2. (1) O[[x]] is an operad.
(2) Ob[[x]] is a graded suboperad of O[[x]].
(3) We have a sequence of injective operad morphisms

O →֒ O[x] →֒ Ob[[x]] →֒ O[[x]]

Proof. These are straight-forward computations. �

We call O[[x]] the operad of powerseries with coefficients in O and Ob[[x]] the operad of bounded
powerseries with coefficients in O.

Definition 4.3. Consider Quilt[x], Quiltb[[x]] and Quilt[[x]] for x a 0-ary element x ∈ Quilt(0) of degree
−1, then let Quilt[c], Quiltb[[c]] and Quilt[[c]] be their respective quotients under the following relations

(1) ∂(c) = 0
(2) (12, 1 2) ◦1 c ◦1 c = 0
(3) (W,T ) ◦i c = 0 if i has more than two children in T or i is repeated in W (that is, it has a child

in W ).

Remark 4.4. In Definition 4.3, (1) determines that c encodes a natural transformation, (2) embodies the
cocycle condition and (3) determines the form of c. The letter c will always stand for the twist subject
to its relations, and should not be confused with a free variable.

On inspection of mQuilt from [8, Def. 5.2], we see that our conditions on c are a subset of those
imposed on m in mQuilt. Hence, we obtain a morphism Quilt[c] −→ mQuilt sending c to m.

4.2. The morphism L∞ −→ Quilt. In [8, Thm 7.8] a morphism L∞ −→ Quilt : ln 7−→ L0
n is defined

by setting

L0
n :=

∑

Q∈Quilt(n)
deg(Q)=n−2

sgn(Q) Q

In particular, this means that for every n ≥ 2 the equation

(4) 0 = ∂L0
n +

∑

p+q=n+1
p,q≥2

∑

σ∈Shp−1,q

(−1)(p−1)q(−1)σ(L0
p ◦p L

0
q)

σ−1

holds.
An important feature which we will need, is that we can write L0

n as the antisymmetrization of
elements P 0

n . Namely, we set

P 0
n :=

∑

Q∈Quilt(n)
deg(Q)=n−2

Q labelled in ↓order

(−1)1+
n(n−1)

2 Q
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then we have
L0
n =

∑

σ∈Sn

(−1)σ(P 0
n)

σ.

In fact, the L∞-relations translate to the following

(5) ∂P 0
n +

∑

p+q=n+1
p,q≥2

p
∑

j=1

(−1)(p−1)q+(p−j)(q−1)P 0
p ◦j P

0
q ∈ 〈Q −Qσ|σ ∈ Sn〉 ⊆ Quilt(n)

where 〈−〉 denotes ‘free k-module generated by−’.

4.3. The morphism L∞ −→ Quiltb[[c]]. Next we will define more involved L∞-operations incorporat-
ing c.

Definition 4.5. For n+ r ≥ 2 we define

P r
n :=

∑

1≤y1<...<yr≤n+r

(−1)y1,...,yrP 0
n+r ◦y1 c ◦y2−1 . . . ◦yr−r+1 c

where (−1)y1,...,yr denotes the sign of the (r, n)-shuffle defined by (y1, . . . , yr). Using these we set

Lr
n :=

∑

σ∈Sn

(−1)σ (P r
n)

σ

Remark 4.6. Note that Lr
n live in Quilt[c].

Let us compute P r
n for some low n and r.

Example 4.7. In case no elements c are added, we obtain the original P 0
n

P 0
2 = 1 2 , P 0

3 = 1
2

3
, P 0

4 = − 1
2

3 4
−

1
2

4

3

−
1

2

4

3 , . . .

Similar to how we drew elements from mNSOp as trees with vertices plugged by m, elements of Quilt[c]
can be drawn as quilts with rectangles plugged by c. For example, we have

P 1
1 = c 1 − 1 c

or

P 2
2 = c

1

c 2
− c

1

2 c
− 1

2

c c
−

1
2

c

c −
1

2

c

c

Note that depending on where we plug the elements c a sign is added.

This enables us to define the following.

Definition 4.8.

Ln :=
∑

r≥0

Lr
n for n ≥ 2 and L1 :=

∑

r≥1

Lr
1

Set
∂′ := ∂ + ∂L1

where
∂L1(A) := L1 ◦1 A− (−1)|A|

∑

i

A ◦i L1

(a derivation by an element) which will be the new differential.

Remark 4.9. Note that Ln are bounded because their components have constant degree n − 2. Hence,
Ln live in Quiltb[[c]].

The main theorem of this section is the following.

Theorem 4.10. The map
L∞ −→ (Quiltb[[c]], ∂

′) : ln 7−→ Ln

defines a morphism of dg-operads.

First we need some lemmas.
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Lemma 4.11. For r ≥ 2 we have Lr
0 = 0.

Proof. Due to relation (3) in definition 4.3 of c, there cannot be a vertical composition of c. Hence,
Lr
0 = 0 for r ≥ 3. L2

0 = 0 due to condition 2 of the definition of c. �

Remark 4.12. Note that we have used 2 out of the three conditions on c to prove this lemma.

The following lemma extends the L∞-equation of (L0
n)n for higher Lr

n.

Lemma 4.13. For n ≥ 1 and r ≥ 0, we have

−∂(Lr
n) =

∑

i+j=r
k+l=n+1
k+i≥2
l+j≥2

∑

χ∈Shk−1,l

(−1)χ(−1)(k−1)l
(

Li
k ◦k L

j
l

)χ−1

.

Proof. By applying ∂ and using equation (5) and ∂(c) = 0, we deduce

−∂(Lr
n) =

∑

p+q=n+r+1
p,q≥2

∑

σ∈Sn

∑

1≤y1<...<yr≤n+r
x=1,...,p

(−1)y1,...,yr(−1)σ(−1)(p−1)q(−1)(p−x)(q−1)
(

P 0
p ◦x P 0

q (◦ye−e+1c)e
)σ

Given 1 ≤ y1 < . . . < yr ≤ n + r and 1 ≤ x ≤ p, we have a subdivision into two groups where
◦ys−s+1c is inserted into either P 0

p or P 0
q . Hence, if we are also given a permutation σ ∈ Sn, then we

show that there exists unique integers i + j = r, k + l = n + 1, indices 1 ≤ z1 < . . . < zi ≤ k + i and
1 ≤ z′1 < . . . < z′j ≤ j + l, permutations τ ∈ Sk+i, τ

′ ∈ Sj+l and a shuffle χ ∈ Shk−1,l such that

(6) (−1)y1,...,yr(−1)σ(−1)(p−1)q(−1)(p−x)(q−1)
(

P 0
p ◦x P 0

q (◦ye−e+1c)e
)σ

=

(−1)(z1,...,zi)+(z′
1,...,z

′
j)(−1)χ+τ+τ ′

(−1)(k−1)l

(

(

P 0
k+i (◦ze−e+1c)e

)τ
◦k
(

P 0
l+j(◦z′

f
−f+1c)f

)τ ′)χ−1

In this case, we obtain

(7) − ∂(Lr
n) =

∑

i+j=r
k+l=n+1
k+i≥2
l+j≥2

∑

χ∈Shk−1,l

(−1)χ(−1)(k−1)l

∑

τ∈Sk,τ ′∈Sl

∑

1≤z1<...<zi≤k+i
1≤z′

1<...<z′
j≤j+l

(−1)τ+τ ′+(z1,...,zi)+(z′
1,...,z

′
j)

(

(

P 0
k+i (◦ze−e+1c)e

)τ
◦k
(

P 0
l+j(◦z′

f
−f+1c)f

)τ ′)χ−1

By applying the definition of Ln, this proves the lemma.
We show that equation (6) holds: the set y1 < . . . < yr splits into three subsets

• z11 < . . . < z1i1 such that z1t < x,

• z21 < . . . < z2i2 such that z2t > x+ q − 1,

• z
′0
1 < . . . < z

′0
j = {y1 < . . . < yr} \ {z11 < . . . < z1i1 , z

2
1 < . . . < z2i2}.

from which we define

zt :=

{

z1t t ≤ i1

z2t−i1
− q t > i1

z′t := z
′0
t − x+ 1

i := i1 + i2 and j := r − i, k := p− i and l := q − j

We then compute

(8) P 0
p ◦x P 0

q (◦ye−e+1c)e = (−1)i(l+j)+i2j
(

P 0
k+i (◦ze−e+1c)e

)

◦x−i1

(

P 0
l+j(◦z′

f
−f+1c)f

)

where the sign appears because we move the c’s corresponding to z
′0
t past j c’s corresponding to z

′0
t and

also i c’s past P 0
q . Note that if we know x and i1, then given i, j, k, l, z1, . . . , zi, z

′
1, . . . , z

′
j we can uniquely

determine p, q, r, n, y1, . . . , yr.
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We also compute the sign of y1, . . . , yr: let θ and θ′ be the shuffles such that

z11 , . . . , z
1
i1

θ
 1, . . . , i1

z
′0
1 , . . . , z

′0
j

z′
1,...,z

′
j

 x, . . . , x+ j
j(x−i1−1)
 i1 + 1, . . . , i1 + j

z21 , . . . , z
2
i2

θ′

 x+ q, . . . , x+ q + i2 − 1
i2(l+x−i1−1)
 i1 + j + 1, . . . , r

then we obtain that

(−1)y1,...,yr = (−1)θ+(z′
1,...,z

′
j)+j(x−i1−1)+θ′+i2(l+x−i1−1)

On the other hand,

z1, . . . , zi1 , zi1+1, . . . , zi
θ+θ′

 1, . . . , i1, x+ 1, . . . , x+ i2
i2(x−i1)
 1, . . . , i

and thus we have

(−1)y1,...,yr = (−1)(z1,...,zi)+(z′
1,...,z

′
j)+j(x−i1−1)+i2(l+1)

Given σ ∈ Sn, let b1 < . . . < bl ⊆ 〈k + l − 1〉 such that σ(bt) ∈ {x − i1, . . . , x − i1 + l − 1} and let
a1 < . . . < ak1 := 〈k + l − 1〉 \ {b1 < . . . < bl}. We then define the (k − 1, l)-shuffle χ = (a1 < . . . <
ak−1, b1 < . . . < bl) and

τ(t) =

{

σχ(t) t < k

x− i1 t = k
and τ ′(t) = σ(bt)− (x − i1 − 1)

It is then easy to see that

(

P 0
k+i (◦ze−e+1c)e ◦x−i1

(

P 0
l+j(◦z′

f
−f+1c)f

))σχ

=
(

P 0
k+i (◦ze−e+1c)e

)τ
◦k
(

P 0
l+j(◦z′

f
−f+1c)f

)τ ′

Note that τ and z1, . . . , zi determine x and i1 uniquely. Hence, given z1, . . . , zi, z
′
1, . . . , z

′
j, k, l we can

uniquely determine y1, . . . , yr, p, q, n, r in the above manner. In order to show that equation (6) holds,
we only need to verify the corresponding signs: let τ0 be the permutation such that

σχ(1), . . . , σχ(k − 1)
τ0
 1, . . . , x− i1 − 1, x− i1 + l, . . . , k + l − 1

σχ(k), . . . , σχ(k + l − 1)
τ ′

 x− i1, . . . , x− i1 + l

and thus we have that (−1)σ+χ = (−1)τ0+τ ′+l(k−x+i1). On the other hand, we have that τ corresponds
to

τ(1), . . . , τ(k)
τ0
 1, . . . , x− i1 − 1, x− i1 + 1, . . . , k − 1, τ(k)

k−x+i1
 1, . . . , k − 1

and thus we have

(−1)σ+χ = (−1)τ+τ ′+(l+1)(k−x+i1)

As such, we can compute

(−1)(z1,...,zi)+(z′
1,...,z

′
j)(−1)χ+τ+τ ′

(−1)(k−1)l(−1)i(l+j)+i2j

= (−1)y1,...,yr+σ(−1)i2(l+1)+j(x−i1−1)+(l+1)(k−x+i1)+(k−1)l+i(l+j)+i2j

and

i2(l + 1) + j(x− i1 − 1) + (l + 1)(k − x+ i1) + (k − 1)l + i(l + j) + i2j

= (l + 1)(k − x+ i) + j(x− i− 1) + (k − 1)l + i(l + j)

= (l + 1)(p− x) + j(p− x+ (k − 1)) + (k − 1)l + iq

= (q − 1)(p− x) + (k − 1)q + iq

= (q − 1)(p− x) + (p− 1)q

which completes the proof. �

Lemma 4.14. Ln are skew symmetric and ∂′ is a differential making Quiltb[[c]] into a dg-operad.
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Proof. It is clear from the definition of Lr
n that they are skew symmetric and thus also Ln.

Per definition ∂L1 is a derivation by construction and so is ∂, and thus so is ∂′.
It is clear from the definition of c that ∂′(c) = 0. Hence, we only need to show that ∂′∂′(Q) = 0 for

every Q ∈ Quilt. Using lemma 4.11 and 4.13 we first prove that −∂L1 = L1 ◦1 L1. Namely, we compute

−∂(L1) =
∑

r≥1

∑

i+j=r
k+l=2
k+i≥2
l+j≥2

∑

χ∈Shk−1,l

(−1)χ(−1)(k−1)l(Li
k ◦k L

j
l )

χ−1

=
∑

i+j=r
i,j≥1
r≥1

Li
1 ◦1 L

j
1 = L1 ◦1 L1(9)

Now let us compute
∂′∂′Q = ∂∂Q+ ∂∂L1Q+ ∂L1∂Q+ ∂L1∂L1Q

we compute separately

∂L1∂Q = L1 ◦1 ∂Q− (−1)|Q|−1
∑

i

∂Q ◦i L1

and

∂∂L1Q = ∂(L1 ◦1 Q)− (−1)|Q|
∑

i

∂(Q ◦i L1)

= ∂L1 ◦1 Q+ (−1)|Q|L1 ◦1 ∂Q− (−1)|Q|
∑

i

∂Q ◦i L1 − (−1)|Q|−1
∑

i

∂L1

adding them gives

∂L1∂Q+ ∂∂L1Q = ∂L1 ◦1 Q− (−1)|Q|−1
∑

i

Q ◦i ∂L1

Next, we compute ∂L1∂L1Q. As L1 has only a single input and has degree −1, we have for i 6= j that
Q ◦i L1 ◦j L1 = −Q ◦j L1 ◦i L1. Hence, by also using using equation (9), we obtain

∂L1∂L1Q = L1 ◦1 (L1 ◦1 Q)− (−1)|Q|
∑

i

L1 ◦1 (Q ◦i L1) + (−1)|Q|
∑

i

(L1 ◦1 Q) ◦i L1

−
∑

i,j

Q ◦i L1 ◦j L1

= L1 ◦ L1 ◦1 Q−
∑

i

Q ◦i (L1 ◦1 L1)

= ∂L1∂Q+ ∂∂L1Q

As ∂∂Q = 0 we thus obtain ∂′∂′Q = 0. �

Proof of Theorem 4.10. We need to show for every n ≥ 2 that the equation

0 = ∂′(Ln) +
∑

k+l=n+1
k,l≥2

∑

σ∈Shk−1,l

(−1)(k−1)l(−1)σ(Lk ◦k Ll)
σ−1

holds, which is equivalent to

0 = ∂(Ln) +
∑

k+l=n+1
k,l≥1

∑

σ∈Shk−1,l

(−1)(k−1)l(−1)σ(Lk ◦k Ll)
σ−1

This is equivalent to showing for every r ≥ 0 that the equation

(10) 0 = ∂(Lr
n) +

∑

i+j=r
k+l=n+1

k,l≥1
(l,j) 6=(1,0) 6=(k,i)
(l,j) 6=(0,1) 6=(k,i)

∑

σ∈Shk−1,l

(−1)(k−1)l(−1)σ(Li
k ◦k L

j
l )

σ−1

holds, which follows from lemma 4.13 and Li
0 = 0 for i ≥ 0 (lemma 4.11). �

Remark 4.15. Under the natural morphism Quilt[c] −→ mQuilt sending c to m our L∞-structure corre-
sponds to the L∞-structure from [8, Thm. 7.13], that is, we have the commutative diagram

Quiltb[[c]]

L∞ mQuilt Quiltb[[m]]
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where Quiltb[[m]] denotes the quotient of the operad of bounded powerseries by the relations on m in
mQuilt.

4.4. The morphism Quiltb[[c]] −→ End(sCGS(A)). In this section, we make (the suspension of)
CGS(A) into a Quiltb[[c]]-algebra.

The morphism R : Quilt −→ End(sCGS(A)) naturally extends to a morphism of graded operads
Rc : Quilt[c] −→ End(sCGS(A)) by sending c to c ∈ CGS(A) as the axioms of Quilt[c] correspond
respectively to c being a natural transformation, the cocycle condition of c and c ∈ C2,0(A). Next, we
will show that it further extends to the operad of bounded power series.

Lemma 4.16. Let θ1, . . . , θn ∈ CGS(A) where θi ∈ Cpi,qi(A) and Q ∈ Quilt[c](n, r) of degree t, then
Rc(Q)(θ1, . . . , θn) = 0 if r >

∑n
i=1 qi − t.

Proof. This follows fromCGS(A) having only non-negative bidegree. Namely, givenQ = Q′◦i1 c◦i2 . . .◦ir c
for a certain Q′ ∈ Quilt(n+ r), the bidegree of Rc(Q

′) is (
∑n

i=1 pi+2r− (n+ r− 1),
∑n

i=1 qi− deg(Q′)).
As deg(Q′) = deg(Q) + r = t+ r, we have that

n
∑

i=1

qi − deg(Q′) < 0 ⇐⇒ r >

n
∑

i=1

qi − t

proving the lemma. �

Theorem 4.17. For A = (A,m, f, c) a linear prestack over U , the map

Rc : (Quiltb[[c]], ∂
′) −→ End(sCGS(A), d)

defined as Rc(Q) = R(Q) for Q ∈ Quilt and Rc(c) = c, is a morphism of dg-operads.

Proof. The representation Rc extends to Quiltb[[c]] due to lemma 4.16.

We verify that Rc∂
′Q = ∂dRcQ for Q ∈ Quilt. It suffices to verify that RcL

j
1 = dj as ∂ corresponds

to ∂d0 . Let θ ∈ Cp,q(A) and σ ∈ Np+j(U) and note that we write |θ| for the degree p+ q of θ in CGS(A).

Step 2: RcL
1
1 = d1

We can write d1 =
∑p+1

s=0(−1)
p+q+1+sds1 where ds1 names the sth component of d1. We write out the

left-hand side

(11) RcL
1
1(θ) = R(P 0

2 )(c, θ)− (−1)|θ|−1R(P 0
2 )(θ, c)

where P 0
2 = (−1)

2·1
2 +1(12, 1 2 ). There exists two colorings (X0, J0) and (Xp+1, Jp+1) of the quilt

Q = (W,T ) in P 0
2 (c, θ) given by the patchworks

(X1, J1) =

m

1 q

1

p

1
2

p+ 1

(Xp+1, Jp+1) =

m

1 q

1

2

1
2

p+ 1

which correspond respectively to d01 and dp+1
1 . We verify their signs: the sign sgnQ(X0, J0) = sgnW (X0) sgnT (J0)(−1)

q

is determined by two shuffles

011102 . . . (q − 1)2  011102

12 . . . (p− 1)211  1112 . . . (p− 1)2

and thus sgnQ(X0, J0) = (−1)p−1+q. In the second case, we have sgn(Xp+1, Jp+1) = sgnW (Xp+1) sgnT (Jp+1)(−1)q

determined by the two shuffles

011102 . . . (q − 1)2  011102

1112 . . . (p− 1)2  1112 . . . (p− 1)2

Hence, sgnQ(Xp+1, Jp+1) = (−1)q.
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There exists p colorings (Xi, Ji)
p
i=1 of P 0

2 occuring in the second term of (11), given by the patchworks

(Xi, Ji) =

m

1 2

1 q

1

i

i+ 1

p+ 1

for i = 1, . . . , p. They correspond to dp+1−i
1 and we verify their signs: we have sgnQ(Xi, Ji) =

sgnW (Xi) sgnT (Ji) determined by the two shuffles

01 . . . (q − 1)10212  01 . . . (q − 1)10212

11 . . . (i− 1)112i1 . . . (p− 1)1  11 . . . (p− 1)112

Hence, we obtain the sign
−(−1)p+q−1 sgnQ(Xi, Ji) = (−1)q−i

Step 2: RcL
j
1 = dj

First, we name the terms of dj and write

dj(θ)
σ :=

∑

β∈Sq+1−j

∑

r∈P (Rp(σ))

(−1)r+β+q−j+1dj(θ)
σ(β, r)

such that

dj(θ)
σ(β, r) ∈

∏

A∈A(Up)q−j+2

Hom(

q
⊗

i=1

A(Up)(Ai, Ai−1),A(U0)(σ
#Aq−j+2, σ

∗A0))

Next, we note that the only non-vanishing term of Lj
1 is given by (−1)(j−1)

P 0
j+1 ◦1 c ◦2 c ◦2 . . . ◦2 c as

c cannot have any children vertically. Moreover, the only non-vanishing quilts are of the form

QT = (W ′, T ′) =



123242 . . .2 (j + 1) 2, 1

2

T




for any binary tree T on j − 1 vertices whose numbering is compatible with the word component W of
QT . Hence, the possible colorings of QT are

(X, J ′) =















m

32

1 2

j + 13

t1 tj−1

. . .

, 1

2

J1

2















=

m

j

j + 1
1

2

p+ j

3 j + 1

1

. . .

for t1 < . . . < tj−1 in 〈q〉 and J an indexed tree coloring T .
As a result, we have that

RcL
j
1 (θ) = (−1)(j−1)+(j−1)(p+q−1)

RP 0
j+1 (c, θ, c, . . . , c)

which sums over the terms

sgnQT
(X, J ′) (−1)

(j+1)j
2 +1 L (X, J ′)

We finish the proof by showing that a formal path r and a shuffle β ∈ Sq+1−j,j−1 correspond uniquely
to such a binary tree T and a coloring (X, J ′) of QT such that

(−1)r+β+(q+1−j)
dj (θ)

σ
(β, r) = sgnQ (X, J ′) (−1)

j(j+1)
2 +1

(−1)(j−1)+(j−1)(p+q−1) L (X, J ′) (c, θ, c . . . , c) (θ)
σ

Given a formal path r = (r1, . . . , rj−1) = ((τ1, i1) , . . . , (τj−1, ij−1)) we first define T and its coloring J
as trees with vertex set {3, . . . , j + 1} inductively:
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• In the degenerate case j = 2, r is uniquely determined and we set T to be the one vertex tree
and J the empty function.

• For j > 2, let (T0, J0) be the indexed tree corresponding to ((τ1, i1), . . . , (τj−2, ij−2)), in order to
add vertex j + 1 we have three cases
(1) if ij−1 < ij−2, then set j ⊳J (j + 1) and start over with (ij−1, ij+1)
(2) if ij−1 = ij−2 or ij−1 = ij−2 + 1, then let (j, j + 1) ∈ ET and set resp. J(j, j + 1) = 2 or

= 1.
(3) if ij−1 > ij−2 + 1, then set (j + 1) ⊳J j and start over with (ij−1, ij+1 − 1)
which we can draw as follows

j

j + 1

(1)

u∗
ij−2+2

u∗
ij−2+1

u∗
ij−1+1

u∗
ij−1

j
j + 1

(2)

u∗
ij−1+2

u∗
ij−1+1

u∗
ij−1

j
j + 1

u∗
ij−1+1

u∗
ij−1

u∗
ij−1−1

j

j + 1

(3)

u∗
ij−2+1

u∗
ij−2

u∗
ij−1+1

u∗
ij−1

Clearly, this process is reversible: given (T, J) we obtain a unique sequence r ∈ P (Rp(σ)). By identifying
the shuffle β ∈ Shq+1−j,j−1 and X via tl = β(q − j + 1 + l), we clearly obtain that L(X, I ′)(θ)σ =
dj(θ)

σ(β, r).
The remaining work is to verify the signs: sgnQT

(X, J ′) consists of three components

sgnW ′(X) sgnT ′(J ′)(−1)σ

where (−1)σ = (−1)q as it corresponds to the shuffle

0, q, 0, . . . , 0, 1, p− 1, 1, . . . , 1  0, 1, q, p− 1, 0, 1, . . . , 0, 1.

The sign sgnW ′(X) corresponds to the shuffle transforming the word

0(j+1) . . . 030111

(1)

02 . . . (β(t+ 1)− 1)2 13β(t+ 1)2 . . . 1(j+1)β(t+ j − 1)2 . . . (q − 1)2

(2)

,

for t = q − j + 1, into the word

01 . . . (q1 − 1)1 . . . 0(j+1) . . . (qj+1 − 1)(j+1).

We observe that shuffling the second part (2)

02 . . . (β(t+ 1)− 1)2 13 β(t+ 1)2 . . . 1(j+1) β(t+ j − 1)2 . . . (q − 1)2  02 . . . (q2 − 1)2 13 . . . 1(j+1)

almost corresponds to the shuffle β. However, there is in every interval β(s)2, . . . , (β(s+1)− 1)2 exactly
one element too many. We remedy this by moving 1(j−2) one place to the right, then 1(j−3) two place,

and so on. As such, its corresponding sign is (−1)β+
∑j−2

i=1 i = (−1)β+
(j−2)(j−1)

2 . Next, we shuffle

0(j+1) . . . 03011102 . . . (q2 − 1)213 . . . 1(j+1)  011102 . . . (q − 1)20313 . . . 0(j+1)1(j+1)

whose sign is (−1)(j−1)(q+2). Hence, we obtain that

sgnW ′(X) = (−1)β+
(j−1)(j−2)

2 +(j−1)q.

Next, we determined sgnT ′(J ′) as the sign of the shuffle

[CJ ]1112 . . . (p− 1)2  1112 . . . (p− 1)213 . . . 1(j+1),

where [CJ ] denotes the word obtained from the indexed tree J . We will show that the sign corresponding
to the shuffle χ : [CJ ] 13 . . . 1(j+1) is (−1)

r+j−1. As a consequence, we obtain that

sgnT ′(J ′) = (−1)r+j−1+p(j−1),

and thus that

sgn(X, J ′) = (−1)β+r+q+j−1(−1)
(j−1)j

2 +(j−1)(p+q−1).

Hence, we have

sgnQ(X, J ′)(−1)
j(j+1)

2 +1(−1)(j−1)+(j−1)(p+q−1) = (−1)β+r+q−j+1

which completes the proof.
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We compute χ inductively: we have that [CJ ] = A1(j+1)B for certain words A and B and let χ0 denote

the shuffle AB  13 . . . 1j . By induction we know that (−1)χ0 = (−1)r0+j−2 for the formal path r0 =

(r1, . . . , rj−2) and (−1)r = (−1)r0+ij−1 where rj−1 = (σ, ij−1). Moreover, we have (−1)χ = (−1)χ0+|B|

where |B| denotes the length of B. We determine |B|. First, observe that the sequence associated to
two indexed trees

3 4
1

3 4
2

and

is respectively 1h41h3 and 1h31h4. Thus, let 3 = v1 <T . . . <T vt = j + 1 be the unique chain of vertices
from the root of T to j + 1, then we can define the numbers

• l as the the number of vertices to the right of vertex j + 1 in T ,
• k as the number of vertices in the above chain such that J(vg, vg+1) = 1.

We then easily compute that

• the height ij−1 of rj−1 = (∂ij−1σ, ij−1) is exactly (1 + l) + k,
• length of B is l + k

and thus by induction we obtain

(−1)χ = (−1)χ0+|B| = (−1)χ0+ij−1+1 = (−1)r+(j−1)

where the last equality follows from induction. �

Remark 4.18. In the case of presheaves, when looking at the subcomplex CGS(A) of normalised and
reduced cochains, the map Rc factorises through Quiltb[[m]] as m is sent to the identity 1u,v : u∗v∗ =
(vu)∗. Only in the case of normalised and reduced cochains does the identity satisfy all the relations on
m.

Note however that our induced morphism mQuilt −→ Quiltb[[m]] −→ End(sCGS(A)) does not cor-
respond to the mQuilt-algebra structure [8, Thm. 5.6].

However, the resulting L∞-algebra structure, in the case of presheaves, does correspond to the one
obtained from [8, Thm. 5.6, Thm. 7.13]. This is essentially due to the multiplication of the prestack
being unital. A mQuilt-algebra structure also induces a Gerstenhaber-algebra structure on cohomology
[8, Thm. 6.11]. Writing down the relevant quilts, it is also easy to see that both mQuilt-algebra structures
(ours and [8, Thm. 5.6]) induce the same Gerstenhaber-algebra structure on cohomology.

4.5. Deformations of prestacks. Let k be a field of characteristic 0. Let (C, d, (Ln)n≥2) be an L∞-
algebra. By definition, the Maurer-Cartan equation for θ ∈ C is given by

MC(θ) = d(θ) +

∞
∑

n=1

1

n!
Ln(θ, . . . , θ).

We consider the set of (degree 1) Maurer-Cartan elements MC(C) = {θ ∈ C1 | MC(θ) = 0} and for the
appropriate notion of gauge equivalence (see [9]), we consider

MC(C) = {θ ∈ C1 | MC(θ) = 0}/ ∼ .

This gives rise to a functor MC
C

: Art −→ Set : (R,m) 7−→ MC(m ⊗C) on the category Art of Artin
local k-algebras.

Consider the GS-complex (CGS(A), d) of a prestack (A, (m + f + c)). In [2, Thm. 3.19] it is shown
that normalised reduced 2-cocycles in CGS(A) correspond to first order deformations of A, that is,
deformations in the direction of R = k[ǫ]. More precisely, for (m′, f ′, c′) ∈ C2

GS(A), we have that
(A[ǫ],m +m′ǫ, f + f ′ǫ, c+ c′ǫ) is a first-order deformation of (A,m, f, c) if and only if d(m′, f ′, c′) = 0
and (m′, f ′, c′) is normalised and reduced. Further, it is shown in loc. cit. that the cohomology of the
GS-complex classifies the first-order deformations of A up to equivalence.

Putting Theorems 4.10 and 4.17 together, sCGS(A) is endowed with an L∞-structure which can be
used to obtain higher order versions of these results.

For normalised, reduced cochains, it will be convenient to express the MC-equation in terms of the
unsymmetrised components (Pn)n≥1 from Definition 4.5. The following characteristic-free expression of
the MC-equation should be seen as the counterpart of the equation MC(θ) = d(θ) + θ{θ} for the first
brace operation (or “dot product”) on the Hochschild complex of an algebra. Note that we omit writing
Rc and consider everything as elements of End(sCGS(A)).

Proposition 4.19. For a reduced and normalised cochain θ = (m′, f ′, c′) ∈ sC1
GS(A), we have

MC(θ) = d(θ) + P1(θ) + P2(θ, θ) + P3(θ, θ, θ, θ) + P4(θ, θ, θ, θ).

In particular, the MC-equation is quartic.
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Proof. First note that as |θ| = 1, that Qσ(θ, . . . , θ) = (−1)σQ(θ, . . . , θ). Moreover, as we can consider
c ∈ C2,0(A), the MC-equation consists of d0(θ

′) and summations of Q(θ1, . . . , θn) for quilts Q of degree
n− 2 and θi ∈ C2

GS(A). Let Q = (W,T ) be such a quilt, part of some P 0
n , then W = 12 . . . 2. For n ≥ 3,

we know that 3 is also a child in T of 1. As 1 can have at most two children in T , for n ≥ 4, we thus
have 4 and 3 are children of 2 in W , i.e. W = 12324 . . .2.

Q = 1

2

3 . . .

In this case, only the elements c′ or c, and m′ can be inserted in Q respectively in 1 and 2, with 2 a child
of 1 in T . As c′ is reduced, this means that Q(θ, . . . , θ) = 0 for n ≥ 4.

As c is not necessarily reduced, more quilts are possible. Note that we write θ[i] to refer to the element
θ inserted in vertex i. The above reasoning still applies and we can once more apply this reasoning to
obtain for n ≥ 6 that W = 12324546 . . .42 and 1 and 3 have two children in T .

Q =
3

4

5 . . .

2

1

This means that 2 and 4 need be inserted by m′ and hence 3 and 1 by either c′ or c. In case either one is
c′, we already know it is zero as c′ is reduced. Thus, consider vertex 1 and c inserted by c, then, as m′[4]
is a child of c[3] in T , c[3] is the unit of the corresponding category A(U) and it is plugged into m′[2]
which is normalised, whence we obtain that Q(θ1, . . . , θn) = 0 for n ≥ 6. Hence, P 0

n(θ1, . . . , θn) = 0 for
n ≥ 6.

Combining the above reasonings, we have that Pn(θ, . . . , θ) = 0 for n > 5. In the case n = 5 there
has to be at least one c present and thus the non-zero terms are contained in P4. �

Proposition 4.20. For a prestack (A,m, f, c) and θ = (m′, f ′, c′) ∈ sC1
GS(A), we have that (A,m +

m′, f + f ′, c+ c′) is a prestack if and only if MC(θ) = 0 and θ is normalised and reduced.

Proof. Using the fact that θ = (m′, f ′, c′) ∈ C2
GS(A) is reduced and normalised, we compute MC(θ)

and look at each component MC(θ)[p,q] ∈ Cp,q(A) for p + q = 3. We will use that c1,− = 1 = c−,1, m
is unital and that (m, f, c) satisfy the axioms of a prestack. Note that for a cochain θ = (θσ(A))σ,A, we
omit writing the set of objects A explicitly where possible in order to lighten the equations below.

For (p, q) = (0, 3), let U ∈ U and A = (A0, A1, A2, A3) objects in A(U), then we compute

MC(θ)U[0,3](A) = dθU[0,3](A) + P2(θ, θ)
U
[0,3](A) + P3(θ, θ, θ)

U
[0,3](A) + P4(θ, θ, θ, θ)

U
[0,3](A)

= d0(m
′) + P 0

3 (c,m
′,m′)

= mU ◦ (1U ,m
′U )−m

′U ◦ (mU , 1U ) +m
′U ◦ (1U ,mU )−mU ◦ (m

′U , 1U )

−mU ◦ (c1U ,1U (A0),m
′U ◦ (m

′U , 1U )) +mU ◦ (c1U ,1U (A0),m
′U ◦ (1U ,m

′U ))

= (mU +m
′U ) ◦

(

1U , (mU +m
′U )
)

− (mU +m
′U ) ◦

(

(mU +m
′U ), 1U

)

For (p, q) = (1, 2), let u : U0 → U1 in U and A = (A0, A1, A2) objects in A(U1), then we compute

dθu[1,2](A) = d0(f
′)u(A) + d1(m

′)u(A)

= mU0 ◦ (fu, f
′u)− f

′u ◦mU1 +mU0 ◦ (f
′u, fu) +mU0 ◦

(

cu,1U0 (A0),m
′U0 ◦ (fu, fu)

)

−mU0 ◦
(

c1U1 ,u(A0), f
u ◦m

′U1

)

P2(θ, θ)
u
[1,2](A) = P 0

2 (f
′, f ′)u(A) + P 0

3 (c,m
′, f ′)u(A) + P 0

3 (c, f
′,m′)u(A)

= mU0 ◦ (f
′u, f

′u) +mU0 ◦
(

cu,1U0 (A0),m
′U0 ◦ (f

′u, fu)
)

+mU0 ◦
(

cu,1U0 (A0),m
′U0(fu, f

′u)
)

−mU0 ◦
(

c1U1 ,u(A0), f
′u ◦m

′U1

)

P3(θ, θ, θ)
u
[1,2](A) = P 0

4 (c,m
′, f ′, f ′)u(A) = mU0 ◦

(

cu,1U0 (A0),m
′U0 ◦ (f

′u, f
′u)
)

P4(θ, θ, θ, θ)
u
[1,2](A) = 0
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and thus

MC(θ)u[1,2](A) = −(f
u + f

′u) ◦ (mU0 +m
′U0) + (mU0 +m

′U0) ◦
(

(fu + f
′u)⊗ (fu + f

′u)
)

For (p, q) = (2, 1), let σ = (U0
u1→ U1

u2→ U2) be a 2-simplex in U and A = (A0, A1) objects in A(U2),
then we compute

dθσ[2,1](A) = d0(c
′)σ(A) + d1(f

′)σ(A) + d2(m
′)σ(A)

= mU0 ◦
(

fu2u1 , c
′σ(A1)

)

−mU0 ◦
(

c
′σ(A0), f

u2 ◦ fu2

)

−mU0 ◦
(

cσ(A0), f
u1 ◦ f

′u2

)

+mU0 ◦
(

f
′u2u1 , cσ(A1)

)

−mU0 ◦
(

cσ(A0), f
′u1 ◦ fu2

)

−mU0 ◦
(

c1U0 ,u2u1(A0),m
′U0 ◦ (cu1,u2(A0), f

u2 ◦ fu1)
)

+mU0 ◦
(

c1U0 ,u2u1(A0),m
′U0 ◦ (fu2u1 , cu1,u2(A1))

)

P2(θ, θ)
σ
[2,1](A) = P 0

2 (f
′, c′)σ(A) + P 0

2 (c
′, f ′)σ(A) + P 0

3 (c, f
′, f ′)σ(A) + P 0

3 (c,m
′, c′)σ(A)

+ P 0
4 (c,m

′, f ′, c)σ(A) + P 0
4 (c,m

′, c, f ′)σ(A)

= mU0 ◦
(

f
′u2u1 , c

′u1,u2(A1)
)

−mU0 ◦
(

c
′u1,u2(A0), f

′u1 ◦ fu2

)

−mU0 ◦
(

c
′u1,u2(A0), f

u1 ◦ f
′u2

)

−mU0 ◦
(

cu1,u2(A0), f
′u1 ◦ f

′u2

)

+mU0 ◦
(

c1U0 ,u2u1(A0),m
′U0 ◦

(

fu2u1 , c
′u1,u2(A1)

))

−mU0 ◦
(

c1U0 ,u2u1(A0),m
′U0 ◦

(

c
′u1,u2(A0), f

u1 ◦ fu2

))

+mU0 ◦
(

c1U0 ,u2u1(A0),m
′U0 ◦

(

f
′u2u1 , cu1,u2(A1)

))

−mU0 ◦
(

c1U0 ,u2u1(A0),m
′U0 ◦

(

cu1,u2(A0), f
u1 ◦ f

′u2

))

−mU0 ◦
(

c1U0 ,u2u1(A0),m
′U0 ◦

(

cu1,u2(A0), f
′u1 ◦ fu2

))

P3(θ, θ, θ)
σ
[2,1](A) = P 0

3 (c
′, f ′, f ′)σ(A) + P 0

4 (c,m
′, f ′, c′)σ(A) + P 0

4 (c,m
′, c′, f ′)σ(A) + P 0

5 (c,m
′, c, f ′, f ′)σ(A)

= −mU0 ◦
(

c
′u1,u2(A0), f

′u1 ◦ f
′u2

)

+mU0 ◦
(

c1U0 ,u2u1(A0),m
′U0 ◦

(

f
′u2u1 , c

′u1,u2(A1)
))

−mU0 ◦
(

c1U0 ,u2u1(A0),m
′U0 ◦

(

c
′u1,u2(A0), f

′u1 ◦ fu2

))

−mU0 ◦
(

c1U0 ,u2u1(A0),m
′U0 ◦

(

c
′u1,u2(A0), f

u1 ◦ f
′u2

))

−mU0 ◦
(

c1U0 ,u2u1(A0),m
′U0 ◦

(

cu1,u2(A0), f
′u1 ◦ f

′u2

))

P4(θ, θ, θ, θ)
σ
[2,1](A) = P 0

5 (c,m
′, c′, f ′, f ′)σ(A) = −mU0 ◦

(

c1U0 ,u2u1(A0),m
′U0 ◦

(

c
′u1,u2(A0), f

′u1 ◦ f
′u2

))

and thus

MC(θ)σ[2,1](A) =
(

mU0 +m
′U0

)

◦
((

fu2u1 + f
′u2u1

)

,
(

cu1,u2(A0) + c
′u1,u2(A0)

))

−
(

mU0 +m
′U0

)

◦
((

cu1,u2(A0) + c
′u1,u2(A0)

)

,
(

fu1 + f
′u1

)

◦
(

fu2 + f
′u2

))

Lastly, for (p, q) = (3, 0), let σ = (U0
u1→ U1

u2→ U2
u3→ U3) be a 3-simplex in U and A0 an object in

A(U2), then we compute

dθσ[3,0](A0) = d3(m
′)σ(A0) + d2(f

′)σ(A0) + d1(c
′)σ(A0)

= mU0 ◦
(

c1U0 ,u3u2u1(A0),m
′U0 ◦ (cu2u1,u3(A0), c

u1,u2(u∗
3A0))

)

−mU0 ◦
(

cu1,u3u2(A0), f
′u1 ◦ cu2,u3(A0)

)

−mU0 ◦
(

cu1,u3u2(A0), f
u1 ◦ c

′u2,u3(A0)
)

+mU0 ◦
(

cu1,u3u2(A0), c
′u1,u2(A0)

)

+mU0 ◦
(

c
′u2u1,u3(A0), c

u1,u2(u∗
3A0)

)

−mU0 ◦
(

cu1,u3u2(A0), f
u1 ◦ c

′u2,u3(A0)
)
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P2(θ, θ)
σ
[3,0](A0) = P 0

2 (c
′, c′)σ(A0) + P 0

3 (c, f
′, c′)σ(A0) + P 0

3 (c
′, f ′, c)σ(A0) + P 0

4 (c,m
′, c′, c)σ(A0) + P 0

4 (c,m
′, c, c′)σ(A0)

+ P 0
5 (c,m

′, c, f ′, c)σ(A0)

= mU0 ◦
(

c
′u2u1,u3(A0), c

′u1,u2(u∗
3A0)

)

−mU0 ◦
(

c
′u1,u2(A0), f

u1 ◦ c
′u2,u3(A0)

)

−mU0 ◦
(

cu1,u2(A0), f
′u1 ◦ c

′u2,u3(A0)
)

−mU0 ◦
(

c
′u1,u2(A0), f

′u1 ◦ cu2,u3(A0)
)

+mU0 ◦
(

c1U0 ,u3u2u1(A0),m
′U0 ◦

(

c
′u2u1,u3(A0), c

u1,u2(u∗
3A0)

))

−mU0 ◦
(

c1U0 ,u3u2u1(A0),m
′U0 ◦

(

c
′u1,u3u2(A0), f

u1 ◦ cu2,u3(A0)
))

+mU0 ◦
(

c1U0 ,u3u2u1(A0),m
′U0 ◦

(

cu2u1,u3(A0), c
′u1,u2(u∗

3A0)
))

−mU0 ◦
(

c1U0 ,u3u2u1(A0),m
′U0 ◦

(

cu1,u3u2(A0), f
u1 ◦ c

′u2,u3(A0)
))

−mU0 ◦
(

c1U0 ,u3u2u1(A0),m
′U0 ◦

(

cu1,u3u2(A0), f
u1 ◦ c

′u2,u3(A0)
))

−mU0 ◦
(

c1U0 ,u3u2u1(A0),m
′U0 ◦

(

cu1,u3u2(A0), f
′u1 ◦ cu2,u3(A0)

))

P3(θ, θ, θ)[3,0] = P 0
3 (c

′, f ′, c′)σ(A0) + P 0
4 (c,m

′, c′, c′)σ(A0) + P 0
5 (c,m

′, c′, f ′, c)σ(A0)

+ P 0
5 (c,m

′, c, f ′, c′)σ(A0)

= −mU0 ◦
(

c
′u1,u3u2(A0), f

′u1 ◦ c
′u2,u2(A0)

)

+mU0 ◦
(

c1U0 ,u3u2u1(A0),m
′U0 ◦

(

c
′u2u1,u3(A0), c

′u1,u2(u∗
3A0)

))

−mU0 ◦
(

c1U0 ,u3u2u1(A0),m
′U0 ◦

(

c
′u1,u3u2(A0), f

u1 ◦ c
′u2,u3(A0)

))

−mU0 ◦
(

c1U0 ,u3u2u1(A0),m
′U0 ◦

(

c
′u1,u3u2(A0), f

′u1 ◦ cu2,u3(A0)
))

−mU0 ◦
(

c1U0 ,u3u2u1(A0),m
′U0 ◦

(

cu1,u3u2(A0), f
′u1 ◦ c

′u2,u3(A0)
))

P4(θ, θ, θ, θ)
σ
[3,0](A0) = P 0

5 (c,m
′, c′, f ′, c′)σ(A0) = −m

U0 ◦
(

c1U0 ,u3u2u1(A0),m
′U0 ◦

(

cu1,u3u2(A0), f
′u1 ◦ c

′u2,u3(A0)
))

and thus

MC(θ)σ[3,0](A0) =
(

mU0 +m
′U0

)

◦
(

(

cu2u1,u3(A0) + cu2u1,u3(A0)
)

,
(

cu1,u2(u∗
3A0) + c

′u1,u2(u∗
3A0)

))

−
(

mU0 +m
′U0

)

◦
(

(

cu1,u3u2(A0) + cu1,u3u2(A0)
)

,
(

fu1 + f
′u2

)

◦
(

cu2,u3(A0) + c
′u2,u3(A0)

))

These computations show that MC(θ) = 0 if and only if (A,m+m′, f + f ′, c+ c′) is a prestack. �

Remark 4.21. Note that for the functor condition we only need the cubic part and for the twists the full
quartic part of the equation.

Based upon Proposition 4.20, with some more work taking gauge equivalence into account, one may
extend [2, Thm. 3.19] to higher order deformations. Recall that for (R,m) ∈ Art an R-deformation of
a k-linear prestack (A,m, f, c) is an R-linear prestack (R ⊗k A, m̄, f̄ , c̄) of which the algebraic structure
reduces to that of A modulo m, and an equivalence of deformations is an isomorphism between the
deformed prestacks which reduces to the identity morphism. Let DefA : Art −→ Set be the deformation
functor of A with DefA(R,m) the set of R-deformations of A up to equivalence of deformations. The
following theorem, of which the proof will appear elsewhere, expresses that the deformation theory of A
is controlled by the L∞-algebra sCGS(A).

Theorem 4.22. Let (A,m, f, c) be a prestack. There is a natural isomorphism of functors Art −→ Set:

DefA ∼= MCsCGS(A).

Appendix A. Generator-Free Description of the morphism NSOp −→ Multi∆

In this appendix, we provide a generator-free description of the morphism NSOp −→ Multi∆ from
lemma 2.5. Although per construction we have a morphism of operads induced from the generators Ei

of NSOp, we consider it valuable in practice to have an explicit definition.
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For I an indexed tree in NSOp(q1, . . . , qn;
∑n

i=1 qi − n+ 1), we call lI =
∑n

i=1 qi − n+ 1 the number
of leaves of I. Given a number m ∈ N, we call the interval

[m,m+ lI ] = {m,m+ 1, . . . ,m+ lI}

the numbering set of leaves of I.

Construction A.1. For I an indexed tree in NSOp(q1, . . . , qn;
∑n

i=1 qi − n+ 1), let Ij be the maximal
subtree of I with root j. Let u be the root of I with children u1 ⊳I . . . ⊳I uk which have index
ij := I(u, uj), then I decomposes as follows

I =

u

. . .

ik

Iu1 Iuk

i1

Given a number m ∈ N, we define a non-decreasing map ζ(I,m) : [qu] −→ [m,m+ lI ] as follows

ζ(I,m)(t) =











m+ t for 0 ≤ t < i1

m+
∑s

j=1 lIj + t for is ≤ t < is+1

m+
∑k

j=1 lIj + t for is ≤ t ≤ qu

which determines where the leaves of the root of I are placed in its numbering set of leaves [m,m+ lI ].
In order to define the tuple ζI = (ζI,1, . . . , ζI,n) ∈ Multi∆(q1, . . . , qn;

∑n
i=1 qi − n+ 1), we run induc-

tively through the tree I from root u to leaves setting

ζI,u := ζ(I, 0) : [qu] −→ [lI ]

and for vertex a with child b and index i := I(a, b) we set

ζI,b := ζ(Ib, ζI,a(i− 1)) : [qb] −→ [ζI,a(i − 1), ζI,a(i − 1) + lIb ] →֒ [lI ]

with lI =
∑n

i=1 qi − n+ 1.

Note that construction 2.5 corresponds to the above construction applied to the generators Ei. As
such, if the generator-free description defines a morphism of operads, they coincide.

Proposition A.2. Construction A.1 defines a morphism of operads NSOp −→ Multi∆.

Proof. Let I ∈ NSOp(q1, . . . , qn; q) and I ′ ∈ NSOp(q′1, . . . , q
′
m; q′) and consider their composition I ′′ :=

I ◦i I ′. We will show that
ζI′′ = ζI ◦i ζI′

As in construction A.1, let Ij , I
′
j and I ′′j be the maximal subtrees of respectively I, I ′ and I ′′ with root

j. Due to equivariance, we can assume that a vertex j belongs to the subtree Ii iff j ≥ i. We then have
three cases to consider which we depict diagrammatically as follows

i

(2)

(3)

(1)

(1) (1)

(1) For j < i, if we contract the subtree Ii and I ′′i to a single vertex with number of leaves lIi = lI′′
i
,

we obtain the same indexed tree I \ Ii = I ′′ \ I ′′i in which Ij and I ′′j coincide. Thus, it is easy to
see that

ζI′′,j = ζI,j

(2) If j ≥ i and j lies in the image Im(I ′) of I ′ in I ′′, then I ′′j consists of the subtree I ′j−i+1 with a
sequence of subtrees It, . . . , It′ placed on top.

j

I ′j

i

It It′
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In this case, ζI′,j−i+1 determines where the leaves of j are placed in I ′ and ζI,i determines where
the leaves of i in I are placed. As a result, we see that

ζI′′,j = ζI,i ◦ ζI′,j−i+1

which determines where the leaves of j are put in I ′′.
(3) If j ≥ i and j does not lie in the image of I ′ in I ′′, then j −m+ 1 lies in I above i. In this case,

the subtrees Ij−m+1 and I ′′j are equal. If the parent a of j in I ′′ does not lie in Im(I ′), then we
clearly have

ζI′′,j = ζI,j−m+1.

If a lies in Im(I ′), then ζI′′,a = ζI,i ◦ ζI′,a−i+1 due to the previous case.

a

i

j

I ′

Moreover, the index I ′′(a, j) then equals I(i, j)− ζI′,a−i+1(0). Hence, we have that

ζI′′,j = ζI,j−m+1

�
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